1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
2 years ago
13

When a snowball turns into a puddle of

Physics
1 answer:
In-s [12.5K]2 years ago
8 0

When a snowball turns into a puddle of water, we know that (the snow ball gains energy and changes from a solid to liquid).

This is correct due to the fact that particles of the snowball are gaining speed and so it is heating up, when the solid's temperature reaches the melting point, it will become a liquid.

Therefore, D is the correct answer.

You might be interested in
Does 3.60 x 10 ⁻² have 2 significant figures
Mandarinka [93]

Answer:

Number of Significant Figures: 2

The Significant Figures are 3 6

Explanation:

= 3.60 × 102

(scientific notation)

= 3.60e2

(scientific e notation)

= 360 × 100

(engineering notation)

(one)

= 360

(real number)

4 0
2 years ago
A record is dropped vertically onto a freely rotating (undriven) turntable. Frictional forces act to bring the record and turnta
alexgriva [62]

Answer:

The loss of initial Kinetic energy = 37.88 %

Explanation:

Given:

Rotational inertia of the turntable = I_t

Rotational inertia (I_r) of the record = 0.61\times I_t

According to the question:

<em>Frictional forces act to bring the record and turntable to a common angular speed.</em>

So,angular momentum will be conserved as it is an inelastic collision.

Considering the initial and final angular velocity of the turn table as  \omega _i\  ,\  \omega_f respectively.

Note :

Angular momentum (L) = Product of moment of inertia  (I)  and angular velocity (\omega) .  

Lets say,

⇒ initial angular momentum = final angular momentum

⇒  L_i=L_f

⇒ (I_t)\times \omega_i = (I_t+I_r)\times \omega_f

⇒ \omega _f=\frac{I_t}{I_t+I_r} \times (\omega_i) ...equation (i)

Now we will find the ratio of the Kinetic energies.

⇒ K_i=\frac{I_t\times \omega_i^2}{2}       ⇒ K_f=\frac{(I_r+I_t)\times \omega_f^2}{2}

Their ratios:

⇒ \frac{K_f}{K_i} =\frac{\frac{(I_t+I_r)\times \omega_f^2}{2} }{\frac{I_t\times \omega_i^2}{2} }    

⇒ \frac{K_f}{K_i} = {\frac{(I_t+I_r)\times \omega_f^2}{2} } \times {\frac{2}{I_t\times \omega_i^2}}

Plugging the values of  \omega _f^2 as \omega _f^2 =(\frac{I_t}{I_t+I_r} \times \omega_i\ )^2 from equation (i) in the ratios of the Kinetic energies.

⇒ \frac{K_f}{K_i} =\frac{(I_t+I_r)\times \frac{(I_t)^2}{(I_t+I_r)^2} \times \omega_i^2}{I_t\times \omega_i^2} =\frac{(I_t)^2}{(I_t+I_r)}\times \frac{1}{I_t}=\frac{I_t}{I_t+I_r}

Now,

The Kinetic energy lost in fraction can be written as:

⇒ \frac{K_f-K_i}{K_i}

Now re-arranging the terms.

\frac{K_f-K_i}{K_i}  =(\frac{K_f}{K_i} -1)= \frac{I_t}{I_t+I_r} -1=\frac{I_t-I_t-I_r}{I_t+I_r} =\frac{-I_r}{(I_t+I_r)}

Plugging the values of  I_r and I_t .

⇒ \frac{K_f}{K_i} = \frac{-0.61I_t}{0.61I_t+I_t} =\frac{-0.61}{1.61} =-0.3788

To find the percentage we have to multiply it with 100 and here negative means for loss of Kinetic energy.

⇒ \frac{K_f}{K_i} = =-0.3788\times 100= 37.88

So the percentage of the initial Kinetic energy lost is 37.88

4 0
2 years ago
As viewed from above in this picture, what direction will the current be in the coil of wire that will cause the loop to rotate
Gala2k [10]

Answer:

When viewed from above, the current in the coil should point towards the top-right corner of the picture.

Explanation:

The current in this coil have only two possible directions: clockwise or counter-clockwise. However, since the diagram shows the coil from above, not from a cross-section, just saying clockwise or counter-clockwise might be ambiguous. The statement that the current is directed towards the top-right corner of the picture is equivalent to saying that when viewed from the lower-right corner of this diagram, the current in the coil is moving clockwise.

Note that at the center of this picture, the current is parallel to the magnetic field- there will be no force on the coil at that position. On the other hand, (also when viewed from above,) at the top-right corner and the lower-left corner of the coil, the current in the coil will be perpendicular to the magnetic field. That's where the force on the coil will be the strongest.

With that in mind, apply the right-hand rule to find the direction of the force on the coil in each of the two possibilities.

Assume that when viewed from above, the current is flowing towards the top-right corner of the picture. Consider the wire near the top-right corner of this coil (as viewed above on this picture.) The current will be going into the picture into the magnetic field. By the right-hand rule, the current on the wire near that point should be pointing towards the bottom of this picture. (Point fingers on the right hand in the direction of the current I. Rotate the right hand such that when curling the fingers, they point in the direction of the magnetic field B. The direction of the right thumb should now point in the direction of the force on the wire F.)

Based on the same assumption, the current in the wires near the bottom left corner of this coil will be pointing out of the picture. By the right hand rule, the magnetic force on the coil in that region should be pointing towards the top of this picture. Combing these two forces, the coil would indeed be rotating around the center of this picture in the direction shown in the diagram.

It can also be shown that if the current points towards the bottom left corner of the picture when viewed from above, the coil will be rotating about the center of this picture in the opposite direction.

7 0
3 years ago
The pilot of an aircraft wishes to fly due west in a 33.9 km/h wind blowing toward the south. The speed of the aircraft in the a
diamong [38]

Answer:\theta =9.96^{\circ} North of west

Explanation:

Given

Plane wishes to fly in west

but wind with speed 33.9 km/h towards south obstructing its path

so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west

Plane absolute speed=195 km/h

To fly towards west velocity in Y direction should be zero

thus 195sin\theta =33.9

\theta =9.96^{\circ}

so Plane should head towards 9.96^{\circ} North of west in order to fly in west.

So plane

actual velocity is

v=-195cos9.96\hat{i}+195sin9.96\hat{j}

5 0
3 years ago
the motion of a particle along a straight line is represented by the position versus time graph above. at which of the labeled p
atroni [7]

Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.

On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.

The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.

Learn more about acceleration here: brainly.com/question/933224

Learn more: brainly.com/question/25887663

3 0
2 years ago
Other questions:
  • A small ball is attached to one end of a rigid rod with negligible mass. The ball and the rod revolve in a horizontal circle wit
    5·1 answer
  • Measuring the Orbital Speeds of Planets
    6·1 answer
  • Which state of matter can be compressed?
    9·2 answers
  • Read the following experiment. Describe the experiment's results; identify which of Newton's laws is illustrated and how these r
    8·1 answer
  • What is the gauge pressure at the bottom of the cylinder? Suppose that the density of oil is 900 kg/m3.
    9·1 answer
  • What is latent heat? Group of answer choices Energy released when water evaporates. Energy hidden in water vapor in the air. Ene
    14·1 answer
  • Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical dist
    5·1 answer
  • Suppose that an Egyptian farmer claims to have discovered a linen burial cloth used during Egypt's Middle Kingdom some 4000 year
    15·1 answer
  • In physics, what is the positive and negative sign used for when applied to velocity and acceleration?
    8·1 answer
  • What are the main characteristics of S.H.M​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!