Answer:
A. 1.4 m/s to the left
Explanation:
To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:
where:
M = momentum [kg*m/s]
M = m*v
where:
m = mass [kg]
v = velocity [m/s]
where:
m1 = mass of the basketball = 0.5 [kg]
v1 = velocity of the basketball before the collision = 5 [m/s]
m2 = mass of the tennis ball = 0.05 [kg]
v2 = velocity of the tennis ball before the collision = - 30 [m/s]
v3 = velocity of the basketball after the collision [m/s]
v4 = velocity of the tennis ball after the collision = 34 [m/s]
Now replacing and solving:
(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)
1 - (0.05*34) = 0.5*v3
- 0.7 = 0.5*v
v = - 1.4 [m/s]
The negative sign means that the movement is towards left
Answer:
The speed of waves on this wire is 329.14 m/s
Explanation:
Given;
tension of the wire, T = 650 N
mass per unit length, μ = 0.06 g /cm = 0.006 kg/m
(convert the unit of mass per length in g/cm to kg/m by dividing by 10 = 0.06 / 10 = 0.006 kg/m)
The speed of waves on this wire is given as;
Therefore, the speed of waves on this wire is 329.14 m/s
Answer:
T = 4 sec / 2 = 2 sec period of revolution
S = 2 pi R = 2 * pi * 1.75 m = 11 m
V = S / T = 11 m / 2 sec = 5.5 m/s speed of object
Answer:
The dynamo produces Alternating Current output, so in theory yes, it should work in reverse if Alternating Current is input.