Answer:
ответ 1.25 × 10‐³ и вот ваш ответ
Answer:
v = 719.2 m / s and a = 83.33 m / s²
Explanation:
This is a rocket propulsion system where the system is made up of the rocket plus the ejected mass, where the final velocity is
v - v₀ =
ln (M₀ / M)
where v₀ is the initial velocity, v_{e} the velocity of the gases with respect to the rocket and M₀ and M the initial and final masses of the rocket
In this case, if fuel burns at 75 kg / s, we can calculate the fuel burned for the 10 s
m_fuel = 75 10
m_fuel = 750 kg
As the rocket initially had a mass of 3000 kg including 1000 kg of fuel, there are still 250 kg, so the mass of the rocket minus the fuel burned is
M = 3000 -750 = 2250 kg
let's calculate
v - 0 = 2500 ln (3000/2250)
v = 719.2 m / s
To calculate the acceleration, let's use the concept of the rocket thrust, which is the force of the gases on it. In the case of the rocket, it is
Push = v_{e} dM / dt
let's calculate
Push = 2500 75
Push = 187500 N
If we use Newton's second law
F = m a
a = F / m
let's calculate
a = 187500/2250
a = 83.33 m / s²
Answer:
The correct reaction force in response to Heidi's action force is:
c. The friction is equal to 660 N since the beam is not accelerating.
Explanation:
Heidi's action force does not affect the beam. Since friction resists the sliding or rolling of one solid object over another, there is no friction acting on the beam, in this respect. The reaction force is what makes the dog to move because it acts on it. According to Newton's Third Law of Motion, forces always come in action-reaction pairs. This Third Law states that for every action force, there is an equal and opposite reaction force. This means that the dog exerts some force on Heidi, as he pulls it "forward with a force of 9.55 N."
Answer:
As sound waves move (or more accurately, when they travel by transferring their energy) they interact with physical objects. Soft surfaces will absorb sound while hard surfaces will reflect it. .Hard surfaces reflect sound and soft surfaces absorb sound.
The convex mirror has a reflecting surface that curves outward, resembling a portion of the exterior of a sphere. Light rays parallel to the optical axis are reflected from the surface in a direction that diverges from the focal point, which is behind the mirror
Explanation:
1.Pick up litter and throw it away in a garbage can.
2.Blow or sweep fertilizer back onto the grass if it gets onto paved areas. ...
3.Mulch or compost grass or yard waste. ...
4.Wash your car or outdoor equipment where it can flow to a gravel or grassed area instead of a street.
5.Don't pour your motor oil down the storm drain.