Answer:

Explanation:
Let the mass of bullet is m, initial velocity of bullet is vi and c be the specific heat of the bullet.
Kinetic energy, K = 1/2 mvi^2
According to the question, 50% of the kinetic energy is equal to the heat energy absorbed by the bullet.
50% of K = mass of bullet x specific heat x rise in temperature
1/4 mvi^2 = m x c x ΔT

Answer:
1. The reason why a plane mirror forms a virtual image is because it doesn't let the light go through it, but it reflects the light, so if you go behind the plane mirror, then you won't see the rays of light since it's not letting the rays of light go behind it.
2. The image cannot be projected onto a screen also.
3. Also, the Rays of light never meet at a focus point, so hence, this is why the plane mirror forms a virtual image.
Thanks!
Answer: acceleration a = 25m/s^2
Explanation:
Given that:
The plane travels with constant acceleration
x1 = 241.22 m at t1 = 3.70 s
x2 = 297.60 m at t2 = 4.20 s
x3 = 360.23 m at t3 = 4.70 s.
We need to calculate the velocity in the two time intervals.
Interval 1:
Average Velocity v1 = ∆x/∆t = (x2 - x1)/(t2-t1)
v1 = (297.60-241.22)/(4.20-3.70) = 112.76m/s
Interval 2:
Average Velocity v2 = ∆x/∆t = (x3-x2)/(t3-t2)
v2 = (360.23-297.60)/(4.70-4.20)
v2 = 125.26m/s
Acceleration:
Acceleration a = ∆v/∆t
∆v = v2-v1 = 125.26m/s-112.76m/s = 12.5m/s
∆t = change in average time of the two intervals = (t3-t1)/2 = (4.70-3.70)/2 = 0.5s
a = 12.5/0.5 = 25m/s^2
The mechanical energy of the roller coaster is sum of kinetic energy K and gravitational potential energy U:

where

is the kinetic energy

is the gravitational potential energy
Since the ride is frictionless, the total mechanical energy E is conserved during the ride. Therefore, at the top of the hill, the potential energy is maximum, because h (the height) is maximum, and this means the kinetic energy is minimum (because the sum of K and U is constant), so the velocity will be minimum. Viceversa, at the bottom of the hill, the potential energy will be minimum (because h is minimum), so the kinetic energy K will be maximum, and the velocity v of the roller coaster will be maximum.
Answer:No
Explanation:
No
As the train is accelerating so train velocity will be more as compared to the ball and thus will cover more distance as compared to the ball.
When the ball is thrown upward with some velocity, it also possesses the train velocity at the time of throwing but as time passes velocity of train increases due to acceleration of the train. This causes the ball to fall behind the point of launch.