Answer:
a) V_f = 25.514 m/s
b) Q =53.46 degrees CCW from + x-axis
Explanation:
Given:
- Initial speed V_i = 20.5 j m/s
- Acceleration a = 0.31 i m/s^2
- Time duration for acceleration t = 49.0 s
Find:
(a) What is the magnitude of the satellite's velocity when the thruster turns off?
(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.
Solution:
- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:
V_f = V_i + a*t
V_f = 20.5 j + 0.31 i *49
V_f = 20.5 j + 15.19 i
- The magnitude of the velocity vector is given by:
V_f = sqrt ( 20.5^2 + 15.19^2)
V_f = sqrt(650.9861)
V_f = 25.514 m/s
- The direction of the velocity vector can be computed by using x and y components of velocity found above:
tan(Q) = (V_y / V_x)
Q = arctan (20.5 / 15.19)
Q =53.46 degrees
- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.
What is the value of the resistors? There are many types of resistors with different values for how much resistance they provide
Edit: My bad. Where are the resistors located
Answer: 
Explanation:
If we make an analysis of the net force
of the rock that was thrown upwards, we will have the following:
(1)
Where:
is the force with which the rock was thrown
is the weight of the rock
Being the weight the relation between the mass
of the rock and the acceleration due gravity
:
(2)
(3)
Substituting (3) in (1):
(4)
(5) This is the net Force on the rock
On the other hand, we know this force is equal to the multiplication of the mass with the acceleration, according to Newton's 2nd Law:
(6)
Finding the acceleration
:
(7)
(8)
Finally:
Frequency
Amplitude
Wavelength
Speed
Answer:
When you move players towards home plate in order to make the play at home.