Answer:
Q = 30284.88 j
Explanation:
Given data:
Mass of ethanol = 257 g
Cp = 2.4 j/g.°C
Chnage in temperature = ΔT = 49.1°C
Heat required = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = 257 g× 2.4 j/g.°C × 49.1 °C
Q = 30284.88 j
Answer:
Beta emission
Explanation:
In beta emission, a neutron is converted into a proton thereby emitting an electron and a neutrino. A neutrino is a particle that serves to balance the spins.
When a nucleus undergoes beta emission, the mass number of the parent and daughter nuclei remain the same while the atomic number of the daughter nucleus is greater than that of its parent by one unit.
Hence, in beta emission, the daughter nucleus is found one pace to the right of the parent in the periodic table.
Her computer will start to heat up, and the temp. would be 60 degrees celcius.
I hope this helps you ᕕ( ᐛ )ᕗ
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.