The five types of states of matter are solid, liquid, gas, plasma and Bose-Einstein condensate.
Solid objects do not move a lot relative to themselves. Their molecules stay stacked neatly with no intermolecular spaces. They do not have much energy, or heat hence the molecules in solid state don't show movement.
Liquid state have more heat and more energy and a little more intermolecular space than solid. Their molecules are no longer stacked neatly due to presence of air capsules, but they still touch each other. Their structure is uncertain and can flow, their shape will alter quickly and dramatically with outside forces, but they will essentially remain a single mass unless pushed apart.
Gasses have even more energy than liquid and solid. Due to presence of high intermolecular spaces they flow like liquids, but are even more susceptible to the forces acting on them. Their molecules don’t touch each other, but are still close enough to bounce into one another frequently.
Plasma is the state of matter which is like a gas on steroids. Molecules of plasma might start in the same area, but rarely touch each other. Plasma molecules have lost electrons, and have become charged. Plasma molecules set other things on fire, and even vaporize them.
Bose-Einstein condensate or BEC was first created by scientists in the year 1995. This was created using a combination of lasers and magnets, Eric Cornell and Carl Weiman, scientists at the Joint Institute for Lab Astrophysics (JILA) in Boulder, Colorado, cooled a sample of rubidium to within a few degrees of absolute zero.
Learn more about types of matter from the link given below.
brainly.com/question/11805295
#SPJ4
Answer:
9.63 L.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
So the consumed amounts of hydrochloric acid and bromine are the same to the beginning based on:
In such a way, the yielded moles of hydrobromic acid and chlorine are:
Thus, the volume of the sample, after the reaction is the same as no change in the total moles is evidenced, that is 9.63L.
Best regards.
The last one 1) exothermic; 2) exothermic
You can calculate the excess reactant by subtracting the mass of excess reagent consumed from the total mass of reagent given therefore,
The answer: Theoretical yield is 121.60 g of NH₃
Excess reactant is H₂
Rate limiting reactant is N₂
explanation: 100 g of Nitrogen
100 g of hydrogen
We are required to identify the theoretical yield of the reaction, the excess reactant and the rate limiting reagent.
We first write the equation for the reaction between nitrogen and hydrogen;
N₂ + 3H₂ → 2NH₃
From the reaction 1 mole of nitrogen reacts with 3 moles of Hydrogen gas.
Secondly we determine the moles of nitrogen gas given and hydrogen gas given;
Moles of Nitrogen gas
Moles = Mass ÷ Molar mass
Molar mass of nitrogen gas = 28.0 g/mol
Moles of Nitrogen gas = 100 g ÷ 28 g/mol 3.57 moles
Moles of Hydrogen gas
Molar mass of Hydrogen gas = 2.02 g/mol
Moles = 100 g ÷ 2.02 g/mol
= 49.50 moles
From the mole ratio given by the equation, 1 mole of nitrogen requires 3 moles of Hydrogen gas.
Thus, 3.57 moles of Nitrogen gas requires (3.57 × 3) 10.71 moles of Hydrogen gas.
This means, Nitrogen gas is the rate limiting reagent and hydrogen gas is the excess reactant.
Third calculate the theoretical yield of the reaction.
1 mole of nitrogen reacts to from 2 moles of ammonia gas
Therefore;
Moles of ammonia gas produced = Moles of nitrogen × 2
= 3.57 moles × 2
= 7.14 moles
But; molar mass of Ammonia gas is = 17.03 g/mol
Therefore;
Mass of ammonia gas produced = 7.14 moles × 17.03 g/mol
= 121.59 g
= 121.60 g
Thus, the theoretical amount of ammonia gas produced is 121.60 g