Answer: 20L of H2O
Explanation:
C3H8 + 5O2 → 3CO2 + 4H2O
Recall 1mole of a gas contains 22.4L at stp
5moles of O2 contains = 5 x 22.4 = 112L
4moles of H2O contains = 4 x 22.4 = 89.6L
From the equation,
112L of O2 produced 89.6L H2O
There for 25L of O2 will produce XL of H2O i.e
XL of H2O = (25 x 89.6)/112 = 20L
Answer:
D. Gases were released to the atmosphere
Explanation:
In accordance to the law of conservation of mass, the total amount of reactants must equate the total amount of products at the end of the reaction because matter can not be lost or created. However, certain changes like gas evolution, formation of precipitate etc. indicates the occurrence of a chemical reaction.
In a chemical reaction, the total mass of the product(s) would be less than the total weight of the reactant(s) because GASES, which constituted part of the mass of the reaction, WERE RELEASED INTO THE ATMOSPHERE. However, if the mass of the gas released can be accounted for, the amount of reactants and products must balance.
You have to use Avogadro's number (6.02x10^23 molecules/mole) to find the number of moles each reactant starts off with.
moles of Fe and O₂:
12 atoms/(6.02x10^23 atoms/mole)=1.99x10^-23 mol Fe
6 molecules/(6.02x10^23 molecules/mole)=9.967x10^-24 mol <span>O₂
</span>Then you find the limiting reagent by finding how much product each given amount of reactant can make. Which ever one produces the least amount of product is the limiting reagent.
amount of Fe₂O₃ produced:
<span>(1.99x10^-23 mol Fe)x(2mol/4mol)= 9.967x10^-24mol Fe</span>₂O₃<span>
</span>(9.967x10^-24 mol O₂)x(2mol/3mol)= 6.645x10^-24 mol Fe₂O₃<span>
</span>since oxygen produces the leas amount of product, oxygen is the limiting reagent. since we know that oxygen is the limiting reagent we can use the amount of product formed with oxygen to find the amount of iron used.
6.645x10^-24 mol Fe₂O₃x(4mol/2mol)=1.329x10^-23 mol Fe consumed
<span> find the amount left over by subtracting the original amount of Fe by the amount consumed in the reaction.
</span>1.993x10^-23-1.329x10^-23= 6.645x10^-23mol Fe left
find the number of atoms by multiplying that by Avogadro's number.
<span>(6.645x10^-23mol)x(6.02x10^23 atoms/mol)=4 atoms
</span>therefore 4 atoms of Fe will be left over after the reaction happens.
I hope this helps.
Explanation:
the coefficient of hydrogen is 3
Energy is required to change the phase of a substance, such as the energy to break the bonds between molecules in a block of ice so it may melt.
During a phase change energy my be added or subtracted from a system, but the temperature will not change. The temperature will change only when the phase change has completed. No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings. Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart so that the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature.