The maximum height reached by the ball is 99.2 m
Explanation:
When the ball is thrown straight up, it follows a free fall motion, which is a uniformly accelerated motion with constant acceleration (
towards the ground). Therefore, we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
In this problem, we have:
u = 44.1 m/s is the initial vertical velocity of the ball
v = 0 is the final velocity when the ball reaches the maximum height
s is the maximum height
is the acceleration of gravity (downward, so negative)
Solving for s, we find the maximum height reached by the ball:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
The answer is Marie Skłodowska Curie (AKA Marie Curie). She <span>lived her life awash in ionizing radiation. She would be carrying bottles of the radium and polonium in the pocket of her coat and put them in her desk drawer.
So even after a century, her papers are still radioactive. Since the</span><span> most general isotope of radium, which is radium-226, has a half life of 1,601 years.</span>
Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding
What statement best describes what it means to maximize your efforts in sports?
D.none of the above
Answer:

In Celsius:

Explanation:
The formula we are going to use is:

Where:
ε is the emissivity
σ is the Stefan constant
is the final temperature of surrounding surfaces
is the required temperature
is the are of surrounding surface
Calculating The area:

σ= 
ε =0.95
=55+273
=328 K
=100 W

In Celsius:
