Answer:
A
Explanation:
We are usually asked to close the valve of the gas cylinder in our various kitchens at home <u>due to the inflammable property of the Liquified Petroleum Gas.</u>
<em>Without closing the valve, the LPG would diffuse into our homes, and any form of spark would cause an explosion and lead to a fire. Lives and properties could be lost in the process.</em>
The correct option is A.
Answer:
being responsible is owing up to the possible
consequences of your decision whether it was right or wrong.
communication is a two way process in which there is a messenger and receiver
one of the ways by which a person could be responsible is by saying 'I'
in all the things he would say, instead of 'we'
for example , " We don't like the way you acted a while ago " , change it to i don't like tye way you acted a while ago.
here u r establishing ownership on the things you want to say to the person
The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
I am guessing you want us to balance this equation so.
To balance, we add another molecule of HCl to the left side of the equation and another molecule of water (H20) to the right side of the equation to give:
<span>Mg(OH)2 + 2HCl = MgCl2 + 2H20 </span>
Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M