Answer:
The value of the equilibrium constant
at this temperature is 3.42.
Explanation:
Partial pressure of the sulfur dioxide =
Partial pressure of the oxygen gas =
Partial pressure of the sulfur trioxide =

The expression of an equilibrium constant is given by :


The value of the equilibrium constant
at this temperature is 3.42.
Answer:
C.
Explanation:
Specific heat capacity of a substance can be defined as the amount of heat a gram of the substance must lose or absorb in order to change its temperature by a degree Celsius. It is measured in Joules per kilogram per degree Celsius (J/kg°C).
Generally, the specific heat capacity of water is 4.182J/kg°C and is the highest among liquids.
Heat capacity or quantity of heat is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of the substance.
dt represents the change in temperature.
Hence in calculating the relationship between the amount of heat added to a substance and the corresponding temperature change, the specific heat capacity is usually represented by the symbol C.
<u>Answer:</u> The enthalpy of the formation of
is coming out to be -410.8 kJ/mol.Z
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(C_2H_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(2\times \Delta H^o_f_{(CO_2(g))})+(5\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_2H_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![81.1=[(1\times (226.7)})+(4\times (-241.8))]-[(2\times \Delta H^o_f_{(CO_2(g))})+(5\times (0))]\\\\\Delta H^o_f_{(CO_2(g))}=-410.8kJ/mol](https://tex.z-dn.net/?f=81.1%3D%5B%281%5Ctimes%20%28226.7%29%7D%29%2B%284%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%3D-410.8kJ%2Fmol)
Hence, the enthalpy of the formation of
is coming out to be -410.8 kJ/mol.
The average speed is zero if our frame of reference is the rotation of the Earth because the relative distance with respect to the earth is zero.
Average speed = 0.26 km/hr
total time = 316 minutes
distance = speed * time
= 8.3 * 5*1/30 = 8.3 *1/6
= 1.38 km
Average speed = total distance / total time
1.38 km / 5.27
= 0.26 km/hr
Distance is described to be the importance or length of displacement among positions. observe that the gap between two positions is not the same as the distance traveled between them. Distance traveled is the whole period of the path traveled among positions. Distance traveled isn't a vector.
There are three foremost styles of average: imply, median, and mode. each of these strategies works barely otherwise and frequently results in slightly distinct ordinary values. The suggest is the maximum usually used commonly. To get the mean cost, you add up all of the values and divide this general by means of the variety of values.
Learn more about average speed here:-brainly.com/question/4931057
#SPJ4