1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
3 years ago
12

The mean free path of a helium atom in helium gas at standard temperature and pressure is 0.2 um.What is the radius of the heliu

m atom in nanometers?
Physics
1 answer:
ivolga24 [154]3 years ago
5 0

Answer: 0.10233nm

Explanation:

The mean free path \lambda   of an atom is given by the following formula:

\lambda=\frac{RT}{\sqrt{2} \pi d^{2}N_{A}P}    (1)

Where:

\lambda=0.2\mu m=0.2(10)^{-6}m

R=8.3145J/mol.K is the Universal gas constant

T=0\°C=273.115K is the absolute standard temperature

d is the diameter of the helium atom

N_{A}=6.0221(10)^{23}/mol is the Avogadro's number

P=1atm=101.3kPa=101.3(10)^{3}Pa=101.3(10)^{3}J/m^{3} absolute standard pressure

Knowing this, let's find d from (1), in order to find the radius r of the helium atom:

d=\sqrt{\frac{RT}{\sqrt{2}\pi\lambda N_{A}P}}    (2)

d=\sqrt{\frac{(8.3145J/mol.K)(273.115K)}{\sqrt{2}\pi(0.2(10)^{-6}m)(6.0221(10)^{23}/mol)(101.3(10)^{3}J/m^{3})}}    (3)

d=2.0467(10)^{-10}m    (4)

If the radius is half the diameter:

r=\frac{d}{2}  (5)

Then:

r=\frac{2.0467(10)^{-10}m}{2}  (6)

r=1.0233(10)^{-10}m  (7)

However, we were asked to find this radius in nanometers. Knowing 1nm=(10)^{-9}m:

r=1.0233(10)^{-10}m.\frac{1nm}{(10)^{-9}m}=0.10233nm  (8)

Finally:

r=0.10233nm This is the radius of the helium atom in nanometers.

You might be interested in
A wave traveling in a string has a wavelength of 35 cm, an amplitude of 8. 4 cm, and a period of 1. 2 s. What is the speed of th
AlekseyPX

0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)

35 / 1.2 = 29.16

29.16 ÷ 100 = 0.29

Wave velocity in string:

The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.

Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.

Learn more about density here:

brainly.com/question/15164682

#SPJ4

3 0
2 years ago
Why does a partially inflated weather balloon expand as it rises?
marusya05 [52]
Air pressure pushing in on the balloon decreases as the balloon rises.
3 0
3 years ago
Read 2 more answers
A miniature quadcopter is located at x = -2.25 m and y, - 5.70 matt - 0 and moves with an average velocity having components Vv,
kupik [55]

Recall that average velocity is equal to change in position over a given time interval,

\vec v_{\rm ave} = \dfrac{\Delta \vec r}{\Delta t}

so that the <em>x</em>-component of \vec v_{\rm ave} is

\dfrac{x_2 - (-2.25\,\mathrm m)}{1.60\,\mathrm s} = 2.70\dfrac{\rm m}{\rm s}

and its <em>y</em>-component is

\dfrac{y_2 - 5.70\,\mathrm m}{1.60\,\mathrm s} = -2.50\dfrac{\rm m}{\rm s}

Solve for x_2 and y_2, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.

x_2 = -2.25\,\mathrm m + \left(2.70\dfrac{\rm m}{\rm s}\right)(1.60\,\mathrm s) \implies \boxed{x_2 = 2.07\,\mathrm m}

y_2 = 5.70\,\mathrm m + \left(-2.50\dfrac{\rm m}{\rm s}\right)(1.60\,\mathrm s) \implies \boxed{y_2 = 1.70\,\mathrm m}

Note that I'm reading the given details as

x_1 = -2.25\,\mathrm m \\\\ y_1 = -5.70\,\mathrm m \\\\ v_x = 2.70\dfrac{\rm m}{\rm s}\\\\ v_y=-2.50\dfrac{\rm m}{\rm s}

so if any of these are incorrect, you should make the appropriate adjustments to the work above.

8 0
3 years ago
Two identical 0.400 kg masses are pressed against opposite ends of a light spring of force constant 1.75 N/cm, compressing the s
nlexa [21]

Answer:

0.853 m/s

Explanation:

Total energy stored in the spring = Total kinetic energy of the masses.

1/2ke² = 1/2m'v².................... Equation 1

Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.

make v the subject of the equation,

v = e[√(k/m')].................... Equation 2

Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.

Substitute into equation 2

v = 0.39[√(1.75/0.8)

v = 0.39[2.1875]

v = 0.853 m/s

Hence the speed of each mass = 0.853 m/s

7 0
3 years ago
Mirages are due to what
Alexeev081 [22]
Atmospheric refraction.
3 0
4 years ago
Read 2 more answers
Other questions:
  • A lightning bolt occurs when billions of protons are transferred at the same time. ____________________
    13·1 answer
  • What is the base number for the metric system of units? In other words, by what number do we multiply to move up in scale ? ____
    10·2 answers
  • What is FALSE about E coli and the lac operon? A. The lac Y and lac Z genes are turned off when lactose is present.B. The lac Y
    9·1 answer
  • 18. _______ is a subtype of the continental climate.
    6·1 answer
  • On a hot summer day, heat waves can be seen rising from the asphalt. What type of heat transfer do the heat waves demonstrate?
    10·1 answer
  • In a new scenario, the block only makes it (exactly) half-way through the rough spot. How far was the spring compressed from its
    7·1 answer
  • I really need help with this!! Will give brainliest if you help T^T
    8·1 answer
  • The movement of the liquid in a thermometer shows changes in temperature. An increase in temperature indicates the molecules in
    15·1 answer
  • Describe the 3 types of projectiles.
    12·2 answers
  • What is the momentum of an 80 kg runner moving at the speed of 2.5 m/s? Use the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!