Answer: 3) 39.96 amu
Explanation:
Mass of isotope Ar- 36 = 35.97 amu
% abundance of isotope Ar- 36= 0.337% = 
Mass of isotope Ar- 38 = 37.96 amu
% abundance of isotope 2 = 0.063 % = 
Mass of isotope Ar- 40 = 39.96 amu
% abundance of isotope 2 = 99.600 % = 
Formula used for average atomic mass of an element :

![A=\sum[(35.97\times 3.37\times 10^{-3})+(37.96\times 6.3\times 10^{-4})+(39.96\times 0.996)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2835.97%5Ctimes%203.37%5Ctimes%2010%5E%7B-3%7D%29%2B%2837.96%5Ctimes%206.3%5Ctimes%2010%5E%7B-4%7D%29%2B%2839.96%5Ctimes%200.996%29%5D)

Therefore, the average atomic mass of argon is 39.96 amu
Answer:
hey mate
Explanation:
Formula for Acceleration Due to Gravity
These two laws lead to the most useful form of the formula for calculating acceleration due to gravity: g = G*M/R^2, where g is the acceleration due to gravity, G is the universal gravitational constant, M is mass, and R is distance.
Explanation:
Given problem:
Find the molar mass of:
SO₃ and C₁₀H₈
Solution:
The molar mass of a compound is the mass in grams of one mole of the substance.
To solve this, we are going to add the individual atomic masses of the elements in the compound;
Atomic mass;
S = 32g/mol; O = 16g/mol; C = 12g/mol and H = 1g/mol
For SO₃;
= 32 + 3(16)
= 32 + 48
= 80g/mol
For C₁₀H₈
= 10(12) + 8(1)
= 120 + 8
= 128g/mol
Increased density decreases the speed of sound in a medium. While increased density can mean increased rigidity, or stiffness, it is not always the case. Greater density can be due to each molecule or atom having more momentum, and being slower to respond to the vibration of its neighbor.
Answer:
Molecular Formula Fe2O12S3·5H2O
IUPAC Name iron(3+);tri sulfate;pentahydrate
Explanation: