Answer:
The velocity of the players will be <u>2.88 m/s</u> in the <u>east</u> direction.
Explanation:
Let 'v' be the velocity of the players after collision.
Consider the east direction as positive direction.
Given:
Mass of the first player is,
kg
Initial velocity of the first player is,
m/s
Mass of the second player is,
kg
Initial velocity of the second player is,
m/s
In order to solve this problem we use the law of conservation of momentum which says that the total momentum must be conserved before and after the collision. So we can write:

Solving for v, we get:

Therefore, their velocity after the collision is 2.88 m/s.
The sign of the velocity after collision is positive. So, the players will move in the east direction only after collision.
Answer:
3.71 eV
Explanation:
λ = Wavelength of light = 224 nm = 224 x 10⁻⁹ m
c = speed of electromagnetic wave = 3 x 10⁸ m/s
V₀ = stopping potential = 1.84 volts
W₀ = Work function of the metal = ?
Using the equation


= 5.94 x 10⁻¹⁹
= 3.71 eV
It is TRUE, Force is proportional to the product of the masses and inversely proportional to the square of the distance between them.
Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Answer:
Explanation:
Given
Weight of person
At highest point Magnitude of the normal force
net force at highest point
where
centripetal force
Normal Force
Negative sign shows force is in upward direction
At bottom point centripetal force is towards the bottom