Answer:
See attached picture.
Explanation:
See attached picture for explanation.
Answer:
5.833
Explanation:
Coefficient of Perfomance (COP) is the ratio of refrigeration effect to power input.
where RE is refrigeration effect and P is power input
Here, the power input is given as 30 kW
We also know that 1 ton cooling is equivalent to 3.5 kW hence for 50 tons, RE=50*3.5=175 kW
Now the 
Answer:
μ=0.329, 2.671 turns.
Explanation:
(a) ln(T2/T1)=μβ β=angle of contact in radians
take T2 as greater tension value and T1 smaller, otherwise the friction would be opposite.
T2=5000 lb and T1=80 lb
we have two full turns which makes total angle of contact=4π radians
μ=ln(T2/T1)/β=(ln(5000/80))/4π
μ=0.329
(b) using the same relation as above we will now compute the angle of contact.
take greater tension as T2 and smaller as T1.
T2=20000 lb T1=80 lb μ=0.329
β=ln(20000/80)/0.329=16.7825 radians
divide the angle of contact by 2π to obtain number of turns.
16.7825/2π =2.671 turns
Answer:
a) isentropic efficiency = 84.905%
b) rate of entropy generation = .341 kj/(kg.k)
Please kindly see explaination and attachment.
Explanation:
a) isentropic efficiency = 84.905%
b) rate of entropy generation = .341 kj/(kg.k)
The Isentropic efficiency of a turbine is a comparison of the actual power output with the Isentropic case.
Entropy can be defined as the thermodynamic quantity representing the unavailability of a system's thermal energy for conversion into mechanical work, often interpreted as the degree of disorder or randomness in the system.
Please refer to attachment for step by step solution of the question.
Answer: the increase in the external resistor will affect and decrease the current in the circuit.
Explanation: A battery has it own internal resistance, r, and given an external resistor of resistance, R, the equation of typical of Ohm's law giving the flow of current is
E = IR + Ir = I(R + r)........(1)
Where IR is the potential difference flowing in the external circuit and Or is the lost voltage due to internal resistance of battery. From (1)
I = E/(R + r)
As R increases, and E, r remain constant, the value (R + r) increases, hence the value of current, I, in the external circuit decreases.