Answer:
Specific heat at constant pressure is = 1.005 kJ/kg.K
Specific heat at constant volume is = 0.718 kJ/kg.K
Explanation:
given data
temperature T1 = 50°C
temperature T2 = 80°C
solution
we know energy require to heat the air is express as
for constant pressure and volume
Q = m × c × ΔT ........................1
here m is mass of the gas and c is specific heat of the gas and Δ
T is change in temperature of the gas
here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.
and here at constant pressure Specific heat is greater than the specific heat at constant volume,
so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is
Specific heat at constant pressure is = 1.005 kJ/kg.K
and
Specific heat at constant volume is = 0.718 kJ/kg.K
Answer:
For an atom to become totally stable, it needs to have a full outer shell. To do this, two or more atoms will share or give away electrons to each other in a process called bonding.
Explanation:
When an atom loses or gains an electron, it becomes an ion. If it gains an electron, it's a cation, and if it loses one, it's an anion. This happens most commonly in chemical reactions, in which atoms share electrons to form a stable outer shell of 8. For example, the water molecule consists of two hydrogen atoms and an oxygen atom.
A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.
Answer:
B convection MERRY CHRISTMAS
Explanation:
-- It takes 100 calories of heat to make 10 grams of the stuff 20° warmer.
How much of the heat warms each gram ?
-- It takes 10 calories of heat to make each gram of the stuff 20° warmer.
How much of the heat warms that gram each degree ?
-- It takes 1/2 calorie of heat to make each gram of the stuff 1° warmer.
The specific heat of that stuff is
(1/2 calorie) per gram per °C.
That's choice-3 .