Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.
Good morning.
We have:

Where
j is the unitary vector in the direction of the
y-axis.
We have that

We add the vector
-a to both sides:

Therefore, the magnitude of
b is
47 units.
(a) The minimum force F he must exert to get the block moving is 38.9 N.
(b) The acceleration of the block is 0.79 m/s².
<h3>
Minimum force to be applied </h3>
The minimum force F he must exert to get the block moving is calculated as follows;
Fcosθ = μ(s)Fₙ
Fcosθ = μ(s)mg
where;
- μ(s) is coefficient of static friction
- m is mass of the block
- g is acceleration due to gravity
F = [0.1(36)(9.8)] / [(cos(25)]
F = 38.9 N
<h3>Acceleration of the block</h3>
F(net) = 38.9 - (0.03 x 36 x 9.8) = 28.32
a = F(net)/m
a = 28.32/36
a = 0.79 m/s²
Thus, the minimum force F he must exert to get the block moving is 38.9 N.
The acceleration of the block is 0.79 m/s².
Learn more about minimum force here: brainly.com/question/14353320
#SPJ1
Answer:
α = 0
, w = w₀
Explanation:
Torque is related to angular acceleration by Newton's second law for rotational motion.
τ = I α
Where τ is the torque, I the moment of inertia and α the angular acceleration.
If we apply an external torque for the sum of all torques to be zero, the angular acceleration must fall to zero
α = 0
Since the acceleration is zero, the angular velocity you have at that time is constantly killed.
w = w₀ + α t
w = w₀ + 0
What does this supposed to mean?