Make a ball of clay and embed small beads throughout it. The plum pudding model.
Answer:
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
Explanation:
When we balance a chemical equation, what we are trying to do is to achieve the same number of atoms for each element on both sides of the arrow. On the right of the arrow is where we can find the products, while the reactants are found on the left of the arrow.
We usually balance O and H atoms last.
AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 1
Cl --- 3
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
2 AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of As atoms is now balanced.
2 AsCl₃ + 3 H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of S atoms is now equal on both sides.
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
The equation is now balanced.
212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
Option A.
Explanation:
Similar to Avagadro's law, there is another law termed as dilution law. As the product of volume and normality of the reactant is equal to the product of volume and normality of the product from the Avagadro's law. In dilution law, it will be as product of volume and concentration of the solute of the reactant is equal to the product of volume and concentration of solution.

So, as per the given question C1 = 5.45 M of lead nitrate and V1 has to be found. While C2 is 1.41 M of lead nitrate and V2 is 820.7 ml.
Then, 

So nearly 212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
To fully understand the problem, we use the ICE table to identify the concentration of the species. We calculate as follows:
Ka = 2.0 x 10^-9 = [H+][OBr-] / [HOBr]
HOBr = 0.50 M
KOBr = 0.30 M = OBr-
<span> HOBr + H2O <-> H+ + OBr- </span>
<span>I 0.50 - 0 0.30 </span>
<span>C -x x x
</span>---------------------------------------------
<span>E(0.50-x) x (0.30+x) </span>
<span>Assuming that the value of x is small as compared to 0.30 and 0.50 </span>
<span>Ka = 2.0 x 10^-9 = x (0.30) / 0.50) </span>
<span>x = 3.33 x 10^-9 = H+</span>
pH = 8.48