Answer:
0.302L
Explanation:
<em>...97.1mL of 1.21m M aqueous magnesium fluoride solution</em>
<em />
In this problem the chemist is disolving a solution from 1.21mM = 1.21x10⁻³M, to 389μM = 389x10⁻⁶M. That means the solution must be diluted:
1.21x10⁻³M / 389x10⁻⁶M = 3.11 times
As the initial volume of the original concentration is 97.1mL, the final volume must be:
97.1mL * 3.11 = 302.0mL =
0.302L
When 67 g of water is heated from its melting point to its boiling point, it takes 28006 J of heat.
<h2>Relationship between heat production and temperature change</h2>
- A way to numerically relate the quantity of thermal energy acquired (or lost) by a sample of any substance to that sample's mass and the temperature change that results from that is provided by specific heat capacity.
The following formula is frequently used to describe the connection between these four values.
q = msΔT
where, q = the amount of heat emitted or absorbed by the thing
m = the object's mass = 67 gm
s = a specific heat capacity of the substance = 4.18 J/gC
ΔT = the resultant change in the object's temperature = 373.15 -273.15K= 100 k
q = 67 * 4.18 * 100 J
⇒q = 28006 J
Therefore it is concluded that 67 g of water takes 28006 J of heat from its melting point to reach its boiling point.
Learn more about thermal energy here:
brainly.com/question/3022807
#SPJ1
Answer:
The sample will look expanded and occupy more space.
Explanation:
Since, the pressure is constant here, but the temperature is changed. Therefore, according to Charles' Law Volume is directly proportional to Temperature, provided the pressure is kept constant. Mathematically:
V1/T1 = V2/T2
V1 = (T1/T2)(V2)
V1 = (300 k/450 k)(V2)
<u>V1 = (0.67)V2</u>
The equation indicates that The fina volume of the gas V2 will be greater than the initial volume V1. <u>Thus, sample will look expanded and occupy more space than the previous state.</u>
Answer: I believe it’s the second one
(F)
Explanation: