1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
10

What will happen in a wire drawing operation when the cross-sectional area has a reduction of 60% in a single pass?

Engineering
1 answer:
Fofino [41]3 years ago
4 0

Answer:

DRAWING LOAD IS  3.67 A_{O}\sigma

Explanation:

wire drawing is a method of obtaining wire of bigger large diameter from iron rod . it is cold process which need die to obtain wire

drawing load for wire drawing is given as P = A_{F}*\sigma*ln(\frac{A_{O}}{A_{F}})

Where A f is initial area, Ao is original area, σ is yield stress

as given in question sectional area reduce 60%, therefore

A_{f} = A_{O}- 0.6A_{O}

    = 0.4 A_{O}

Due to change in area ,drawing load p is

p = 0.4A_{O}*\sigma*ln(\frac{A_{O}}{0.4A_{O}})

p = 3.67 A_{O}\sigma

You might be interested in
Π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 ...
leva [86]

Answer: Pi= 4 - 4/3 + 4/5 - 4/7 + 4/9 ...

Explanation:

Is the same as the example,

If Π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 ...

Then

(Π/4 )*4= 4*(1 - 1/3 + 1/5 - 1/7 + 1/9 ...)

Π =4 - 4/3 + 4/5 - 4/7 + 4/9 ...

The way to write this is

Sum(from n=0 to n=inf) of (-1)^n 4/(2n+1)

(photo)

6 0
4 years ago
Which type of engineers were the designers of the Great Pyramids of Egypt and the Great Wall of China?
Gemiola [76]
I think it’s structural engineers but still check with the others
8 0
3 years ago
Read 2 more answers
Q4. (20 points) For a bronze alloy, the stress at which plastic deformation begins is 271 MPa and the modulus of elasticity is 1
babunello [35]

Answer:

a) P = 86720 N

b) L = 131.2983 mm

Explanation:

σ = 271 MPa = 271*10⁶ Pa

E = 119 GPa = 119*10⁹ Pa

A = 320 mm² = (320 mm²)(1 m² / 10⁶ mm²) = 3.2*10⁻⁴ m²

a) P = ?

We can apply the equation

σ = P / A     ⇒    P = σ*A = (271*10⁶ Pa)(3.2*10⁻⁴ m²) = 86720 N

b) L₀ = 131 mm = 0.131 m

We can get ΔL applying the following formula (Hooke's Law):

ΔL = (P*L₀) / (A*E)    ⇒  ΔL = (86720 N*0.131 m) / (3.2*10⁻⁴ m²*119*10⁹ Pa)

⇒  ΔL = 2.9832*10⁻⁴ m = 0.2983 mm

Finally we obtain

L = L₀ + ΔL = 131 mm + 0.2983 mm = 131.2983 mm

3 0
4 years ago
A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m² of water vapor in equilibrium at 800 kPa. Heat is transferre
docker41 [41]

Answer:

Initial temperature = 170. 414 °C

Total mass = 94.478 Kg

Final volumen = 33.1181 m^3

Diagram  = see picture.

Explanation:

We can consider this system as a close system, because there is not information about any output or input of water, so the mass in the system is constant.  

The information tells us that the system is in equilibrium with two phases: liquid and steam. When a system is a two phases region (equilibrium) the temperature and pressure keep constant until the change is completed (either condensation or evaporation). Since we know that we are in a two-phase region and we know the pressure of the system, we can check the thermodynamics tables to know the temperature, because there is a unique temperature in which with this pressure (800 kPa) the system can be in two-phases region (reach the equilibrium condition).  

For water in equilibrium at 800 kPa the temperature of saturation is 170.414 °C which is the initial temperature of the system.  

to calculate the total mass of the system, we need to estimate the mass of steam and liquid water and add them. To get these values we use the specific volume for both, liquid and steam for the initial condition. We can get them from the thermodynamics tables.

For the condition of 800 kPa and 170.414 °C using the thermodynamics tables we get:

Vg (Specific Volume of Saturated Steam) = 0.240328 m^3/kg

Vf (Specific Volume of Saturated Liquid) = 0.00111479 m^3/kg

if you divide the volume of liquid and steam provided in the statement by the specific volume of saturated liquid and steam, we can obtain the value of mass of vapor and liquid in the system.

Steam mass = *0.9 m^3 / 0.240328 m^3/kg = 3.74488 Kg

Liquid mass = 0.1 m^3 /0.00111479 m^3/kg = 89.70299 Kg  

Total mass of the system = 3.74488 Kg + 89.70299 Kg = 93,4478 Kg

If we keep the pressure constant increasing the temperature the system will experience a phase-change (see the diagram) going from two-phase region to superheated steam. When we check for properties for the condition of P= 800 kPa and T= 350°C we see that is in the region of superheated steam, so we don’t have liquid water in this condition.  

If we want to get the final volume of the water (steam) in the system, we need to get the specific volume for this condition from the thermodynamics tables.  

Specific Volume of Superheated Steam at 800 kPa and 350°C = 0.354411 m^3/kg

We already know that this a close system so the mass in it keeps constant during the process.

 

If we multiply the mass of the system by the specific volume in the final condition, we can get the final volume for the system.  

Final volume = 93.4478 Kg * 0.354411 m^3/kg = 33.1189 m^3

You can the P-v diagram for this system in the picture.  

For the initial condition you can calculate the quality of the steam (measure of the proportion of steam on the mixture) to see how far the point is from for the condition on all the mix is steam. Is a value between 0 and 1, where 0 is saturated liquid and 1 is saturated steam.  

Quality of steam = mass of steam / total mass of the system

Quality of steam = 3.74488 Kg /93.4478 Kg = 0,040 this value is usually present as a percentage so is 4%.  

Since this a low value we can say that we are very close the saturated liquid point in the diagram.  

6 0
3 years ago
Compute the theoretical density of ZnS given that the Zn-S distance and bond angle are 0.234 nm and 109.5o, respectively. The at
andriy [413]

Answer: the theoretical density is 4.1109 g/cm³

Explanation:  

first the image of one set of ZnS bonding in the crystal structure, we calculate the value of angle θ

θ + ∅ + 90° = 180°

θ = 90° - ∅

θ = 90° - ( 109.5° / 2 )

θ = 35.25°

next we calculate the value of x from the geometry

given that;  distance angle d = 0.234

x = dsinθ

= 0.234 × sin35.25°)

= 0.135 nm = 0.135 × 10⁻⁷ cm

next we calculate the length of the unit cell

a = 4x

a = 4(0.135)

a = 0.54 nm = 0.54 × 10⁻⁷ cm

next we calculate number of formula units

n' = (no of corner atoms in unit ell × contribution of each corner atom in unit cell) + ( no of face center atom in a unit cell × contribution of each face center atom in a unit cell)

n' = 8 × 1/8) + ( 6 × 1/2)

= 1 + 3

= 4

next we calculate the theoretical density using  this equation

P = [n'∑(Ac + AA)] / [Vc.NA]

= [n'∑(Ac + AA)] / [(a)³NA]

where the ∑Ac is sum of atomic weights of all cations in the formula unit( 65.41 g/mol)

∑AA is the sum of weights of all anions in the formula unit( 32.06 g/mol)

Na is the Avogadro’s number( 6.023 × 10²³ units/mole)

so we substitute

P = [4( 65.41 + 32.06)] / [ ( 0.54 × 10⁻⁷ )³ × (6.023 × 10²³)]

= 389.88 / 94.84

= 4.1109 g/cm³

therefore the theoretical density is 4.1109 g/cm³

5 0
3 years ago
Other questions:
  • One type of illumination system consists of rows of strip fluorescents and a ceiling that will transmit light. For this system t
    15·1 answer
  • In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
    11·1 answer
  • A force 25 N makes an angle of 30,45 and 75 degree with x,y and z axis. What should be the corresponding force vector?
    8·1 answer
  • Realize the function f(a, b, c, d, e) = Σ m(6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 25, 28)using a 16-to-1 MUX with control
    13·1 answer
  • Find values of the intrinsic carrier concentration n for silicon at –70° 0° 20° C, 100° C, and C. At 125° each temperature, what
    14·1 answer
  • What are wheel cylinders used for?
    6·1 answer
  • 7. The binary addition 1 + 1 + 1 gives ​
    12·2 answers
  • What is the maximum fine for knowingly refilling a disposable refrigerant drum?
    11·1 answer
  • A hemispherical shell with an external diameter of 500 mm and a thickness of 20 mm is going to be made by casting, located entir
    12·1 answer
  • What is the minimum clamp time for gluing a panel?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!