7.4x10^23 = molecules of silver nitrate sample
6.022x10^23 number of molecules per mole (Avogadro's number)
Divide molecules of AgNO3 by # of molecules per mol
7.4/6.022 = 1.229 mols AgNO3 (Sig Figs would put this at 1.3)
(I leave off the x10^23 because they both will divide out)
Use your periodic table to find the molar weight of silver nitrate.
107.868(Ag) + 14(N) + 3(16[O]) = 169.868g/mol AgNO3
Now multiply your moles of AgNO3 with your molar weight of AgNO3
1.229mol x 169.868g/mol = 208.767g AgNO3
Answer:
a
No
b
100 mm Hg
Explanation:
From the question we are told that
The vapor pressure of CHCl3, is 
The temperature of CHCl3 is 
The volume of the container is 
The temperature of the container is 
The mass of CHCl3 is m = 0.380 g
Generally the number of moles of CHCl3 present before evaporation started is mathematically represented as

Here M is the molar mass of CHCl3 with the value 
=> 
=>
Generally the number of moles of CHCl3 gas that evaporated is mathematically represented as

Here R is the gas constant with value 
So
Given that the number of moles of CHCl3 evaporated is less than the number of moles of CHCl3 initially present , then it mean s that not all the liquid evaporated
At equilibrium the temperature of CHCl3 will be equal to the pressure of air so the pressure at equilibrium is 100 mmHg
Answer:
The electric force between them decreases
Explanation:
The force between two charged particle is given by :

Where
r is the distance between charges
If the distance between the charges is increased, the electric force gets decreased as there is an inverse relation between force and distance.
Hence, the correct option is (c) "The electric force between them decreases"
N₂O₃
3 moles oxgyen atoms in 1 mole .
hope this helps!