When heated, particles vibrate faster, thus increasing the distance between one another. The distance between these particles results in changes of state. Therefore, increased molecular motion results in expansion of an object. This works vice versa for cooling. As the vibrations slow down, the particles become closer together. This results in contraction.
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
Boyle's law says, PV=RT
- Here P represents the pressure, V represents the volume and T represents the temperature. R is a constant. The volume of an ideal gas is inversely proportional to its pressure if the temperature is constant.
- When a bubble is present in deep water it has water pressure and atmospheric pressure. Then the Volume increases when water pressure raises which is proportional to the depth reduces.
- But we should not finalize the volume of the bubble will be four-time as great as at the top than the bottom. if the bottom of the lake is at four atmospheres, the temperature will not be equal to the top.
- If the bubble travels from the bottom to the top or vice-versa, it's going to lose or gain heat in a way that must be quite hard to measure.
Answer: "exothermic" .
______________________________________________
Answer:
Colour of litmus papers in lemon:
Blue litmus- Red
Red litmus- No change
Really sorry but don't know about others
Increasing temperature speeds up a reaction because there are more collisions and the collisions have higher energy. Catalysts speed up reactions by increasing the number of successful collisions. Catalysts are not used up in a reaction. Smaller particles have a larger surface area.