Answer:
Samarium
Explanation:
The element Sm describe is called Samarium. This element has unique sets of properties that makes it very unique and distinct.
The lanthanides are found in the f-block on the periodic table of elements.
This element is a moderately hard silvery metal that readily oxidizes in air. It assumes an oxidation state of +3. The element has an atomic number of 62
Answer:
Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates NaOH·nH
2O.[11] The monohydrate NaOH·H
2O crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound.
As one of the simplest hydroxides, sodium hydroxide is frequently utilized alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students.[12]
Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner. Worldwide production in 2004 was approximately 60 million tons, while demand was 51 million tons.[13]
Answer:
5.66 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em />
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of potassium nitrite = 30.0 g,
mass of the solution = mass of water + mass of potassium nitrite = 500.0 g + 30.0 g = 530.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (30.0 g/530.0 g) x 100 = <em>5.66 %.</em>
According to this formula:
Q = M*C*ΔT
when we have M ( the mass of water) = 200 g
and C ( specific heat capacity ) of water = 4.18 J/gC
ΔT (the difference in temperature) = Tf - Ti
= 100 - 24
= 76°C
So by substitution:
Q = 200 g * 4.18 J/gC * 76 °C
= 63536 J
∴ the amount of heat which be added and absorbed to raise the temp from 24°C to 100°C is = 63536 J
The volume of 6.40 grams of O₂ gas at STP is 4.48L (option A). Details about volume can be found below.
<h3>How to calculate volume?</h3>
The volume of a gas can be calculated using the following formula:
p = m/v
Where;
- p = density
- m = mass
- v = volume
According to this question, the mass of O₂ gas at STP is 6.40 grams. The density of the gas at STP is 1.43 g/L.
1.43g/L = 6.4g/V
Volume of O2 = 6.4 ÷ 1.43 = 4.48L
Therefore, the volume of 6.40 grams of O₂ gas at STP is 4.48L.
Learn more about volume at: brainly.com/question/1578538
#SPJ1