Answer:
In space there is no air resistance. on earth there is
in space there is no opposite forces acting on stopping the ball, so if you throw it it will go on forever.
on earth there is air resistance and gravity, this will pull the ball towards the ground and slow it down.
Answer:
I believe Mercury has the most extreme temperatures in the solar system, ranging from -280?F at night to 800 degrees F during the day for parts of the surface.
Hope that helps! :)
Answer:
Explanation:
There will be conservation of momentum along horizontal plane because no force acts along horizontal plane.
momentum of first piece = .320 kg x 2 m/s
= 0.64 kg m/s along x -axis.
momentum of second piece = .355 kg x 1.5 m/s
= 0.5325 kg m/s along y- axis .
Let the velocity of third piece be v and it is making angle of θ with x -axis .
Horizontal component of its velocity = .100 kg x v cosθ = .1 v cosθ
vertical component of its velocity = .100 kg x v sinθ = .1 v sinθ
For making total momentum in the plane zero
.1 v cosθ = 0.64 kg m/s
.1 v sinθ = 0.5325 kg m/s
Dividing
Tanθ = .5325 / .64 = .83
θ = 40⁰.
The angle will be actually 180 + 40 = 220 ⁰ from positive x -axis.
Explanation:
12) q = mCΔT
125,600 J = (500 g) (4.184 J/g/K) (T − 22°C)
T = 82.0°C
13) Solving for ΔT:
ΔT = q / (mC)
a) ΔT = 1 kJ / (0.4 kg × 0.45 kJ/kg/K) = 5.56°C
b) ΔT = 2 kJ / (0.4 kg × 0.45 kJ/kg/K) = 11.1°C
c) ΔT = 2 kJ / (0.8 kg × 0.45 kJ/kg/K) = 5.56°C
d) ΔT = 1 kJ / (0.4 kg × 0.90 kJ/kg/K) = 2.78°C
e) ΔT = 2 kJ / (0.4 kg × 0.90 kJ/kg/K) = 5.56°C
f) ΔT = 2 kJ / (0.8 kg × 0.90 kJ/kg/K) = 2.78°C
14) q = mCΔT
q = (2000 mL × 1 g/mL) (4.184 J/g/K) (80°C − 20°C)
q = 502,000 J
20) q = mCΔT
q = (2000 g) (4.184 J/g/K) (100°C − 15°C) + (400 g) (0.9 J/g/K) (100°C − 15°C)
q = 742,000 J
24) q = mCΔT
q = (0.10 g) (0.14 J/g/K) (8.5°C − 15°C)
q = -0.091 J