Answer:
<em><u>option</u></em><em><u> (</u></em><em><u>C)</u></em><em><u> </u></em><em><u>is </u></em><em><u>right</u></em><em><u> answer</u></em>
Explanation:
I think it's helps you
Answer:
A) 0.660 g/ml
B) 1.297 ml
C) 0.272 g
Explanation:
Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes. This is where density
appears as a physical characteristic property of matter that establishes a relationship between the mass
of a body or substance and the volume
it occupies:
(1)
Knowing this, let's begin with the answers:
<h2 /><h2>Answer A:</h2>
Here the mass is
and th volume
Solving (1) with these values:
(2)
(3)
<h2>Answer B:</h2>
In this case the mass of a sample is
and its density is
.
Isolating
from (1):
(4)
(5)
(5)
<h2>Answer C:</h2>
In this case the volume of a sample is
and its density is
.
Isolating
from (1):
(6)
(7)
(8)
V = u + at where u is initial velocity (15 m/s), a is acceleration (2m/s^2) and t is time (15 seconds)
V = 15 + 2 X 15
V = 45 m/s
The correct formula to use for the situation given above is: F = MA, where F is the applied force, M is the mass of the object and A is the acceleration.
From the details given in the question, we are told that:
F = 18, 400N
M = 145 g = 145 / 1000 = 0.145 kg
A = ?
From the equation F = MA
A = F / M
A = 18,400 / 0.145 = 126,896.55 = 1.27 *10^5.
Therefore, the correct option is C.
D. all of these
all of these use electricity
Hope I helped!