Answer:
81.5 L
Explanation:
We can use the combined gas law equation that gives the relationship among pressure, temperature and volume of gases for a fixed amount of gas.
P1V1 / T1 = P2V2 / T2
where P1 - pressure, V1 - volume and T1 - temperature at the first instance
P2 - pressure, V2 - volume and T2 - temperature at the second instance
substituting the values in the equation
1240 Torr x 47.2 L / 298 K = 730 Torr x V2 / 303 K
V2 = 81.5 L
the new volume the gas would occupy when the conditions have changed is 81.5 L
Try to search for the answer online!!!!!!!!
Answer:
2.893 x 10⁻³ mol NaOH
[HCOOH] = 0.5786 mol/L
Explanation:
The balanced reaction equation is:
HCOOH + NaOH ⇒ NaHCOO + H₂O
At the endpoint in the titration, the amount of base added is just enough to react with all the formic acid present. So first we will calculate the moles of base added and use the molar ratio from the reaction equation to find the moles of formic acid that must have been present. Then we can find the concentration of formic acid.
The moles of base added is calculated as follows:
n = CV = (0.1088 mol/L)(26.59 mL) = 2.892992 mmol NaOH
Extra significant figures are kept to avoid round-off errors.
Now we relate the amount of NaOH to the amount of HCOOH through the molar ratio of 1:1.
(2.892992 mmol NaOH)(1 HCOOH/1 NaOH) = 2.892992 mmol HCOOH
The concentration of HCOOH to the correct number of significant figures is then calculated as follows:
C = n/V = (2.892992 mmol) / (5.00 mL) = 0.5786 mol/L
The question also asks to calculate the moles of base, so we convert millimoles to moles:
(2.892992 mmol NaOH)(1 mol/1000 mmol) = 2.893 x 10⁻³ mol NaOH
Answer:
The projection of the Fisher projection of D-Fructose and D-glucose is that The carbonyl carbon in D-glucose is carbon 1 (aldehyde), whereas in D-fructose, the carbonyl group is on carbon 2 (ketone).
Explanation:
An aldehyde is a compound containing a functional group with the structure −CHO, consisting of a carbonyl center and
A ketone is a functional group with the structure RC(=O)R', where R and R' can be a variety of carbon-containing substituents.
<h2>
Answer:</h2>
<h3>#Carry On Learning</h3>
<h2>
Explanation:</h2>
<h3>I hope It's Help</h3>