A geologic event causes changes to the physical makeup of a particular place and occurs slowly.
Geological events are what causes numerous changes and phenomena on the Earth's surface. Examples of these events include cliff erosion, volcanic eruption, or sedimentation at a mouth of a river.
Geological processes are extremely slow. However, because of the immense lengths of time involved, huge physical changes do occur - mountains are created and destroyed, continents form, break up and move over the surface of the Earth, coastlines change and rivers and glaciers erode huge valleys.
Geological events are both classified as internal and external. This means that these events occur both in the Earth's surface and interior.
Answer:
杰恩斯克克斯克奇沃伊斯克克斯克什德布德克什恩克恩德恩克恩茨克杰兹姆克斯恩斯姆斯姆德恩德姆德武伊乔奥斯克斯杰德布德赫德夫赫富伊什杰吉迪赫德赫夫赫德
Answer:
4.163 m
Explanation:
Since the length of the bridge is
L = 380 m
And the bridge consists of 2 spans, the initial length of each span is

Due to the increase in temperature, the length of each span increases according to:

where
is the initial length of one span
is the temperature coefficient of thermal expansion
is the increase in temperature
Substituting,

By using Pythagorean's theorem, we can find by how much the height of each span rises due to this thermal expansion (in fact, the new length corresponds to the hypothenuse of a right triangle, in which the base is the original length of the spand, and the rise in heigth is the other side); so we find:

Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J