The first one is 32mL and the second one is 2.62 and I think it’s grams/mL I’m not for sure about the letters on the second one
Answer:
Dynamic equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction:
Explanation:
Reaction quotient is the ratio of product of concentrations of products to product of concentrations of reactants at any time.
The same ratio at equilibrium (when rate of forward reaction becomes equal to rate of backward reaction) is equilibrium constant.
when Q < Kc, a forward reaction is favored.
When when Q > Kc, a backward or reverse reaction is favored
So the first statement that
a) A reaction quotient (Q) larger than the equilibrium constant (K) means that the reaction will favor the production of more products: false
b) No the rate of forward and backward reaction are equal.
c) c. Dynamic equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction: True
d) Dynamic equilibrium indicates that the amount of reactants and products are equal: This could be static equilibrium but not dynamic.
The big advantage to using continuous compounding to express growth rates is it avoids the problem of asymmetry in growth rates:
For example, if we use the normal definition and $100 grows to $105 in one time period, that's a growth rate of $105/$100 - 1 = 5% But if $105 decreases to $100, that's a growth rate of $100/$105 - 1 = -4.76%
The problem of asymmetry is those two growth rates, 5% and -4.75% are not equal up to a sign.
But if you use continuous compounding the growth rate in the first case is ln(105/100) = 0.04879.
And the growth rate in the second is ln (100/105) = -0.04879.
Those two growth rates are definitely the negative of each other.<span>
</span>
Answer:
As a marine chemist, you study the chemical properties of different bodies of water with the goal of making them safer and cleaner. For this to happen, you determine the potential effects of foreign chemicals, as well as the impact of aquatic transportation and construction, on rivers, lakes, and oceans.
Explanation:
A compound that changes colour when it comes into contact with an acid or base is an indicator.