Answer:
initial velocity =starting velocity
final velocity=last velocity
keep in mind the fact that velocity is a vector quantity it also has a direction
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Average speed of the car is 11 m/s
Explanation:
- Speed is calculated by the rate of change of displacement.
- It is given by the formula, Speed = Distance/Time
- Here, distance = 2155 m and time = 195.9 s
Speed of the car = 2155/195.9 = 11 m/s
Solution :
Given :
Mass attached to the spring = 4 kg
Mass dropped = 6 kg
Force constant = 100 N/m
Initial amplitude = 2 m
Therefore,
a). 

= 10 m/s
Final velocity, v at equilibrium position, v = 5 m/s
Now, 
A' = amplitude = 1.4142 m
b). 
m' = 2m
Hence, 
c). 

Therefore, factor 
Thus, the energy will change half times as the result of the collision.
Answer:
The range of powers is 
Explanation:
From the question we are told that
The far point of the left eye is 
The near point of the left eye is 
The near point with the glasses on is 
From these parameter we can see that with the glass on that for near point the
Object distance would be 
Image distance would be 
To obtain the focal length we would apply the lens formula which is mathematically represented as

substituting values


converting to meters


Generally the power of the lens is mathematically represented as

Substituting values


From these parameter we can see that with the glass on that for far point the
Object distance would be 
Image distance would be 
To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

substituting values


converting to meters

Generally the power of the lens is mathematically represented as

Substituting values


This implies that the range of powers of the lens in his glass is
