1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
3 years ago
6

Which of the following statements about a metal wire in equilibrium are true? Select all that apply. The electric field inside t

he wire may be nonzero but uniform.The interior of the metal wire is neutral.The net electric field everywhere inside the wire is zero.There may be excess charges on the surface of the wire.There is no net flow of mobile electrons inside the wire.There may be a constant flow of mobile electrons inside the wire.There cannot be excess charges on the surface of the wire.There are no excess charges in the interior of the wire.There may be excess charges in the interior of the wire.
Engineering
1 answer:
zlopas [31]3 years ago
6 0

Answer:

The interior of the metal wire is neutral

The net electric field everywhere inside the wire is zero

There may be excess charges on the surface of the wire

There is no net flow of mobile electrons inside the wire

There are no excess charges in the interior of the wire

Explanation:

When a metal wire is in equilibrium, the interior of the metal wire is always neural and there is no net flow of mobile electrons inside the wire. Additionally, there are no excess charges in the interior of the wire but there is likelihood of having excess charges on the surface of the wire. Finally, the net electric field everywhere inside the wire is zero

You might be interested in
An open vat in a food processing plant contains 500 L of water at 20°C and atmospheric pressure. If the water is heated to 80°C,
tester [92]

Answer:

percentage change in volume is 2.60%

water level rise is 4.138 mm

Explanation:

given data

volume of water V = 500 L

temperature T1 = 20°C

temperature T2 = 80°C

vat diameter = 2 m

to find out

percentage change in volume and how much water level rise

solution

we will apply here bulk modulus equation that is ratio of change in pressure   to rate of change of volume to change of pressure

and we know that is also in term of change in density also

so

E = -\frac{dp}{dV/V}  ................1

And -\frac{dV}{V} = \frac{d\rho}{\rho}   ............2

here ρ is density

and we know ρ  for 20°C = 998 kg/m³

and ρ  for 80°C = 972 kg/m³

so from equation 2 put all value

-\frac{dV}{V} = \frac{d\rho}{\rho}

-\frac{dV}{500*10^{-3} } = \frac{972-998}{998}

dV = 0.0130 m³

so now  % change in volume will be

dV % = -\frac{dV}{V}  × 100

dV % = -\frac{0.0130}{500*10^{-3} }  × 100

dV % = 2.60 %

so percentage change in volume is 2.60%

and

initial volume v1 = \frac{\pi }{4} *d^2*l(i)    ................3

final volume v2 = \frac{\pi }{4} *d^2*l(f)    ................4

now from equation 3 and 4 , subtract v1 by v2

v2 - v1 =  \frac{\pi }{4} *d^2*(l(f)-l(i))

dV = \frac{\pi }{4} *d^2*dl

put here all value

0.0130 = \frac{\pi }{4} *2^2*dl

dl = 0.004138 m

so water level rise is 4.138 mm

8 0
3 years ago
Which phrase best describes a safety-critical system? A. a system that faces a very high risk of failure B. a system isolated fr
KIM [24]

Answer:

B.

Explanation:

A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in one (or more) of the following outcomes: death or serious injury to people. loss or severe damage to equipment/property.

7 0
3 years ago
An aluminum metal rod is heated to 300oC and, upon equilibration at this temperature, it features a diameter of 25 mm. If a tens
Natalka [10]

Answer:

It will results in mechanical hardening.

5 0
4 years ago
Read 2 more answers
According to fire regulations in a town, the pressure drop in a commercial steel, horizontal pipe must not exceed 2.0 psi per 25
bonufazy [111]

Answer:

6.37 inch

Explanation:

Thinking process:

We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.

To determine the pressure drop in the pipe:

Using the Bernoulli equation for mass conservation:

\frac{P1}{\rho } + \frac{v_{2} }{2g} +z_{1}  = \frac{P2}{\rho } + \frac{v2^{2} }{2g} + z_{2} + f\frac{l}{D} \frac{v^{2} }{2g}

thus

\frac{P1-P2}{\rho }  = f\frac{l}{D} \frac{v^{2} }{2g}

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.

Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F

from the tables

Re= 2.01 × 10⁵

Hence, f = 0.018

Therefore, pressure drop, (P1-P2)/p = 2.70 ft

This occurs at ae presure change of 1.17 psi

Correlating with the chart, we find that the diameter will be D= 0.513

                                                                                                      = <u>6.37 in Ans</u>

7 0
4 years ago
A train consists of a 50 Mg engine and three cars, each having a mass of 30 Mg . If it takes 75 s for the train to increase its
ohaa [14]

Answer:

T = 15 kN

F = 23.33 kN

Explanation:

Given the data in the question,

We apply the impulse momentum principle on the total system,

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

we substitute

[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F( 75 - 0 ) =  1.75 × 10⁶

The resultant frictional tractive force F is will then be;

F =  1.75 × 10⁶ / 75

F = 23333.33 N

F = 23.33 kN

Applying the impulse momentum principle on the three cars;

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F(75-0) = 1.125 × 10⁶

The force T developed is then;

T =  1.125 × 10⁶ / 75

T = 15000 N

T = 15 kN

7 0
3 years ago
Other questions:
  • Which phrases describe an irregular galaxy?
    8·1 answer
  • What parts does the block contain?
    5·2 answers
  • Air at 20 C and 1 atm flows over a flat plate at 35 m/s. The plate is 75 cm long and is maintained at 60 с. Assuming unit depth
    8·1 answer
  • 2. One of the many methods used for drying air is to cool the air below the dew point so that condensation or freezing of the mo
    12·1 answer
  • Why is a crank-rocker mechanism more useful than a double-rocker mechanism?
    13·1 answer
  • Burn in hell i watched your stupid video and i still could not get the answer
    14·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • How can input from multiple individuals improve design solutions for problems that occur because of a natural disaster, such as
    5·1 answer
  • Why is electricity considered a secondary source of energy
    6·1 answer
  • QUICK ASAP!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!