Answer:
Option D is correct.
The concentrations of both PCl₅ and PCl₃ are changing at equilibrium
Explanation:
Chemical equilibrium during a reversible chemical reaction, is characterised by an equal rate of forward reaction and backward reaction. It is better described as dynamic equilibrium.
This is because, the concentration of the elements and compounds involved in the reversible chemical reaction at equilibrium changes, but the rate of change of the reactants is always equal to the rate of change of products.
Hence, the concentration of reactants and products, such as PCl₅ and PCl₃ are allowed to change at equilibrium, but alas, the rate of forward reaction must always match the rate of backward reaction for the process to remain in a state of Chemical equilibrium.
Hope this Helps!!!
Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.
Answer:
8.60 *
atoms N2
Explanation:
We want to convert grams to moles and then moles to atoms.
First, we convert grams of nitrogen gas (which is N2) to moles. To do so, we need the molar mass of N2, which is just 14.01 * 2 = 28.02 g.
40 g N2 *
= 1.43 mol N2
Now, we need to convert moles to atoms by using Avogadro's number, which is
:
1.43 mol N2 *
= 8.60 *
atoms N2
Thus, the answer is 8.60 *
atoms N2.
The chemical purpose of heating the MnSO4⋅H2O is to eliminate water with the formation of new compounds.
<h3>Dehydration reactions</h3>
Dehydration reaction is a type of chemical reaction that involves the removal of water which would eventually lead to the formation of a new compound.
The molecule of MnSO4⋅H2O contains a molecule of water(H2O). After heating of the molecule, water is lost giving rise to the dry compound MnSO4.
Other examples of dehydration reactions are:
- Reactions that produce acid anhydrides.
- Reactions that involve the production of polymers.
- Reaction of sucrose with concentrated sulfuric acid
Therefore, the chemical purpose of heating the MnSO4⋅H2O is to eliminate water with the formation of new compounds.
Learn more about dehydration here:
brainly.com/question/12261974