D.) Tin (Sn) are likely to have a larger atomic radius than silicon....
Answer:
6Br⁻ + XeO₃ + 6H⁺ → 3Br₂ + Xe + 3H₂O
Explanation:
First, we need to write the half-reactions:
2Br⁻ → Br₂ + 2e⁻ Oxidation -Balanced yet-
XeO₃ → Xe Reduction
To balance the reduction in acidic aqueous solution we need to add waters in the other side of the reaction as oxygens are present:
XeO₃ → Xe + 3H₂O
And H⁺ as hydrogens from water we have:
XeO₃ + 6H⁺ → Xe + 3H₂O
To balance the charge:
<h3>XeO₃ + 6H⁺ + 6e⁻ → Xe + 3H₂O Reduction -Balanced-</h3><h3 />
To cancel out the electrons of both half-reaction we need to multiply oxidation 3 times:
6Br⁻ → 3Br₂ + 6e⁻
XeO₃ + 6H⁺ + 6e⁻ → Xe + 3H₂O
And the balanced reaction in acidic aqueous solution is the sum of both half-reactions:
<h3>6Br⁻ + XeO₃ + 6H⁺ → 3Br₂ + Xe + 3H₂O </h3>
the answer is c. Gas molecules will never collide with the walls of the container
Answer:
b
Explanation:
An acid-base titration is an experimental procedure used to determined the unknown concentration of an acid or base by precisely neutralizing it with an acid or base of known concentration. ... It is filled with a solution of strong acid (or base) of known concentration.
Answer:
Specific heat of calcium carbonate(C) = 0.82 (Approx)
Explanation:
Given:
Energy absorbs (q) = 85 J
Change in temperature (Δt) = 34.9 - 21 = 13.9°C
Mass of calcium carbonate = 7.47 g
Find:
Specific heat of calcium carbonate(C)
Computation:
Specific heat of calcium carbonate(C) = q / m(Δt)
Specific heat of calcium carbonate(C) = 85 / (7.47)(13.9)
Specific heat of calcium carbonate(C) = 85 / 103.833
Specific heat of calcium carbonate(C) = 0.8186
Specific heat of calcium carbonate(C) = 0.82 (Approx)