Answer:

Explanation:
Hello!
In this case, considering the given chemical reaction:

Thus, by applying the law of rate proportions, we can write:

Whereas the stoichiometric coefficients of reactants are negative due their disappearance and that of the product is positive due to its appearance. In such a way, when we relate the rate of disappearance of hydrogen gas to the rate of formation of hydrogen iodide, we obtain:

Best regards!
Answer : The correct option is, (B)
Explanation :
Balance equation : Balanced equation are those equation in which the number of atoms of each element and the total charge must be same on products side and reactants side.
In the given options, only option (B) equation has correct formula and also a balanced equation.

while the other options has incorrect formulas and also an unbalanced equations.
The correct equation for option A is, 
The correct equation for option C is, 
The correct equation for option D is, 
Hence, the correct answer is, (B) 
Answer:
The number of formula units in 3.81 g of potassium chloride (KCl) is approximately 3.08 × 10²²
Explanation:
The given parameters is as follows;
The mass of potassium chloride produced in the chemical reaction (KCl) = 3.81 g
The required information = The number of formula units of potassium chloride (KCl)
The Molar Mass of KCl = 74.5513 g/mol

Therefore, we have;

1 mole of a substance, contains Avogadro's number (6.022 × 10²³) of formula units
Therefore;
0.051106 moles of KCl contains 0.051106 × 6.022 × 10²³ ≈ 3.077588 × 10²² formula units
From which we have, the number of formula units in 3.81 g of potassium chloride (KCl) ≈ 3.08 × 10²² formula units.
Answer : The compound that would be most soluble in water is CH3CH2CH2OH
Explanation :
Water is a polar solvent and can dissolve polar molecules. This is based on the principle "Like dissolves like".
Among the given molecules, CH3CH2CH2CH3 is a hydrocarbon known as butane. All hydrocarbons are non polar. Therefore this compound will not be soluble in water.
The remaining compounds are polar, but Ch3CH2CH2OH shows greater solubility in water owing to presence of hydrogen bonding.
Hydrogen bonding is a type of intermolecular force that gets formed when a compound has hydrogen atom directly attached to highly electro-negative N, F or O atom.
When CH3CH2CH2OH is dissolved in water, it forms hydrogen bonds with water molecules. Due to this hydrogen bonding, the molecule shows greater solubility.
Therefore CH3CH2CH2OH is the most soluble compound in water