The ice sculpture would take longer to melt than the ice cube
Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M
Often, the rock layers bookending the mass extinction are noticeably different in their compositions. These changes in the rocks show the effects of environmental disturbances that triggered the mass extinction and sometimes hint at the catastrophic cause of the extinction
Answer:
The amount of NO₂ that can be produced 8.533 g
Explanation:
According to question
2 NO(g) + O₂(g) → 2 NO₂(g)
Given
Moles of nitrogen monoxide = 0.377
Moles of oxygen = 0.278
Since 'NO' is the limiting reagent according to this ratio.
According to equation
2 moles NO reacts to form 2 moles NO₂
So, 0.1855 moles NO give = 0.1855 moles of NO₂
Mass of 1 mole NO₂ = 46 g/mole
Mass of 0.1855 moles = 46 x 0.1855 = 8.533 g