When a dielectric material is inserted between two plates of capacitor that are connected to a battery, you would observe that both the charge and the capacitance of the capacitor would change. This is due to the dielectric material which is able to transmit electric force.
1) According to the law of conservation of momentum ..
<span>Horiz recoil mom of gun (M x v) = horiz. mon acquired by shell (m x Vh) </span>
<span>1.22^6kg x 5.0 m/s = 7502kg x Vh </span>
<span>Vh = 1.22^6 x 5 / 7502 .. .. Vh = 813 m/s </span>
<span>Barrel velocity V .. .. cos20 = Vh / V .. ..V = 813 /cos20 .. .. ►V = 865 m/s </span>
<span>2) Using the standard range equation .. R = u² sin2θ /g </span>
<span>R = 865² x sin40 / 9.80 .. .. ►R = 49077 m .. (49 km)</span>
Answer:
Explanation:
Given that,
Two resistor has resistance in the ratio 2:3
Then,
R1 : R2 = 2:3
R1 / R2 =⅔
3 •R1 = 2• R2
Let R2 = R
Then,
R1 = ⅔R2 = 2/3 R
So, if the resistor are connected in series
Let know the current that will flow in the circuit
Series connection will have a equivalent resistance of
Req = R1 + R2
Req = R + ⅔ R = 5/3 R
Req = 5R / 3
Let a voltage V be connect across then, the current that flows can be calculated using ohms law
V = iR
I = V/Req
I = V / (5R /3)
I = 3V / 5R
This the current that flows in the two resistors since the same current flows in series connection
Now, using ohms law again to calculated voltage in each resistor
V= iR
For R1 = ⅔R
V1 =i•R1
V1 = 3V / 5R × 2R / 3
V1 = 3V × 2R / 5R × 3
V1 = 2V / 5
For R2 = R
V2 = i•R2
V2 = 3V / 5R × R
V2 = 3V × R / 5R
V2 = 3V / 5
Then,
Ratio of voltage 1 to voltage 2
V1 : V2 = V1 / V2 = 2V / 5 ÷ 3V / 5
V1 : V2 = 2V / 5 × 5 / 3V.
V1 : V2 =2 / 3
V1:V2 = 2:3
The ratio of their voltages is also 2:3
Explanation:
the answer to this question would be mj.us 1 and minus 3
Answer:
6 amps
Explanation:by Kirchhoff's loop rule the current at any point in the loop must be equal or charge would be building up. The current at the ammeter is equally to the total current through the sun of the paths in parallel which it is in series with