A first-order reaction is 81omplete in 264s.The half-life for this reaction (i) t 1/2 = =3.465×10 −3 s.to reach 95% Completion = 285 s.
To measure reaction rates, chemists initiate the reaction, measure the concentration of the reactant or product at different times as the reaction progresses,
For a 0-order response, the mathematical expression that may be employed to determine the half of life is: t1/2 = [R]0/2k. For a first-order reaction, the half of-existence is given by: t1/2 = zero.693/ok. For a 2d-order response, the method for the half-life of the response is: 1/okay[R]0
The 1/2-life of a response (t1/2), is the quantity of time needed for a reactant concentration to lower via half of compared to its initial awareness. Its software is used in chemistry and medicine to are expecting the awareness of a substance over time
Half of the lifestyles is the time required for exactly 1/2 of the entities to decay 50%.
Learn more about first order reaction here:-
#SPJ4
Answer:
Option (B) 3.
Explanation:
In the model represented above, the two extreme represent carbon atoms since no other group are attached to it. The joint at the middle also represent carbon atom.
Thus, we can write a more simplify illustration for the model above as
C—C—C
From the above illustration, we can see that the model contains 3 carbon atom.
Answer:
The pH of the lye in soap is 13.
Explanation:
Answer:
What is the absolute temperature of this gas sample when the pressure is ... The total mass of the water vapor is 0.252 g ... A silver spoon with a mass of 25.04 g at a temperature of 100.00 ... A 0.821 gram sample of pure NH F was treated with 25.0 mL of 1.00 M NaOH and heated to drive off the NH, a.
Explanation:
Electronic configuration of the atom describes the arrangemnet of electrons in different shells and subshells ( sublevels).
Now , there are 4 types of sublevels: s, p , d and f . These sublevels have orbital which are spaces with high probability of having an electron and each orbital can have maximum 2 electrons.
Therefore,
s-sublevel has 1 orbital - it can have maximum 2 electrons.
p-sublevel has 3 orbitals - it can have maximum 6 electrons
d-sublevel has 5 orbitals - it can have maximum 10 electrons
f-sublevel has 7 orbitals - it can have maximum 14 electrons.
Hence, the acsending order of sublevels in terms of maximum number of electrons is:
<h2>s < p < d < f</h2>