Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
Molar mass H₂SO₄ = 98.079 g/mol
1 mol -------- 98.079 g
? mole ------ 0.0960 g
moles = 0.0960 * 1 / 98.079
= 0.0960 / 98.079
= 9.788 x 10⁻⁴ moles
hope this helps!
It simply equals 4x-16.......
the expression is in lowest terms, so you can’t do anything else
Answer:
Given: 42 g of N2
Solve for O2 mass that contains the same number of molecules to 42 g of N2.
Solve for the number of moles in 42 g of N2
1 mole of N2 = (14 * 2) g = 28 g so the number of moles in 42 g of N2 is equal to 42 g / 28 g per mole = 1.5 moles
Solve for mass of 1 mole of oxygen
1 mole of O2 = 16 g * 2 = 32 g per mole
Solve for the mass of 1.5 moles of oxygen
mass of 1.5 moles of O2 = 32 g per mole * 1.5 moles
mass of 1.5 moles of O2 = 48 g
So 48 g of O2 contains the same number of molecules as 42 g of N2
Answer:
carbon dioxide is fixed or incorporated into organic molecules.
Explanation:
Carbon dioxide fixation is the conversion of inorganic carbon into organic carbon.
In photosynthesis CO2 is converted into glucose i.e inorganic carbon (CO2) is converted into organic molecule (glucose).