Answer:
(a) The force between them quadruples
Explanation:
According to coulomb's law, initial force between the two charged objects is given as;

where;
k is coulomb's constant
q₁ is the charge on the first object
q₂ is the charge on the second object
r is the distance between the two objects
When the charges on both objects are doubled, then;
q₁ = 2q₁
q₂ = 2q₂
Force between the two charged objects will become

Therefore, the force between them quadruples
Yes, they seem right to me.
Answer:
<em>a) 3.56 x 10^22 N</em>
<em>b) 3.56 x 10^22 N</em>
<em></em>
Explanation:
Mass of the sun M = 2 x 10^30 kg
mass of the Earth m = 6 x 10^24 kg
Distance between the sun and the Earth R = 1.5 x 10^11 m
From Newton's law,
F = 
where F is the gravitational force between the sun and the Earth
G is the gravitational constant = 6.67 × 10^-11 m^3 kg^-1 s^-2
m is the mass of the Earth
M is the mass of the sun
R is the distance between the sun and the Earth.
Substituting values, we have
F =
= <em>3.56 x 10^22 N</em>
<em></em>
A) The force exerted by the sun on the Earth is equal to the force exerted by the Earth on the Sun also, and the force is equal to <em>3.56 x 10^22 N</em>
b) The force exerted by the Earth on the Sun = <em>3.56 x 10^22 N</em>
Mechanical and Chemical. (Weathering and erosion)
Answer:
<u>Valence electrons are always located in the outer most energy level.</u>
Explanation:
Valence electrons are the ones that are involved in chemical bonds. In order to take part in a chemical bonding, the outermost/valence electron needs to be involved. Thus, the answer is <u>Valence electrons are always located in the outer most energy level.</u>