Answer:
CH₃CH(CH₃)CH(C₃H₇)CH₂CH(CH₃)₂:
4-isopropyl-2-methylpentane.
Explanation:
Step One: Draw the structure formula of this compound. Parentheses in the formula indicate substitute groups that are connected to the carbon atom to the left.
For example, the first (CH₃) indicates that the second carbon atom from the left is connected to:
- the CH₃- on the left-hand side,
- the -CH(C₃H₇)CH₂CH(CH₃)₂ on the right-hand side,
- a hydrogen atom, and
- an additional CH₃- group that replaced one hydrogen atom.
Each carbon atom in this compound is connected to four other atoms. All bonds between carbon atoms are single bonds.
The C₃H₇ in the second pair of parentheses is the condensed form of CH₃CH₂CH₂-. See the first sketch attached. Groups in parentheses are highlighted.
Step Two: Find the carbon backbone. The backbone of a hydrocarbon is the longest chain of carbon atoms that runs through the compound. See the second sketch attached. The backbone of this compound consists of seven carbon atoms and is highlighted in green. The name for this backbone shall be heptane.
Step Three: Identify and name the substitute groups.
The two substitute groups are circled in blue in the second sketch.
- The one on the right -CH₃ is a methyl group.
- The one on the left is branched. This group can be formed by removing one hydrogen from the central carbon atom in propane. The name for this group is isopropyl.
Step Four: Number the atoms.
Isopropyl shall be placed before methyl. Start from the right end to minimize the index number on all substitute groups. The methyl group is on carbon number two and the isopropyl group on carbon number four. Hence the name:
4-isopropyl-2-methylheptane.
Answer:
It takes 1.9 years to distribute all the grains.
Explanation:
In one second, grains of wheat are distributed.
We are supposed to find the time it would take to Distribute Avogadro number of grains.
1 avogadro number = 6.022
Number of grains distributed in 1 day = 86400
= 8.64
Number of grains distributed in 1 year= 8.64
= 3.1536
Time taken =
=
= 1.9
Carbon dioxide has a total of 16 valence electrons. 1. To determine the number of valence electrons of carbon dioxide (CO2), first determine the number of valence electrons of each of the elements in the molecule.
a. We have 1 carbon (C) molecule, and 2 oxygen (O) molecules.
b. The carbon molecule has 4 valence electrons and each oxygen molecule has 6 oxygen molecules.
2. Add up the valence electrons of each of the elements
4 + (2 x 6) = 16
(from C) (2 oxygen molecules, with 6 valence electrons each)
Thus, CO2 has a total of 16 valence electrons.
The number of valence electrons can be more clearly seen from the Lewis structure of the CO2 in the figure below (Source: http://chemistry.tutorvista.com/inorganic-chemistry/bonding-electrons.html). The the dots surrounding the letters represent the valence electrons.
Explanation:
Put the pan into a water-containing dish and mix well. Now use a strainer to transfer the solution into another jar. The salt should disappear in it.
And using a tube with a filtrate, transfer the salts that has sand into another bottle with a filtrate. Therefore the sand is split. Eventually, when all the water vaporizes and the salt stays in the bottle, leave the extra solvent and heat it.
Answer:
The answer to your question is: letter c
Explanation:
Data
V1 = 612 ml n1 = 9.11 mol
V2 = 123 ml n2 = ?
Formula
n2 = 1.83 mol