1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
9

Suppose no stars more massive than about 2 solar masses had ever formed. Would life as we know it have been able to develop

Physics
1 answer:
exis [7]3 years ago
6 0

Answer:

No, life would not be to develop

Explanation:

Stars less massive than about 2 solar masses can only produce natural element up to carbon and oxygen, which are the basic elements for building life. However, other more massive elements are needed by life to thrive and function properly, more massive elements like phosphorus, iron necessary for oxygen circulation, calcium for a strong support system, and silicon are essential for for life to form and be sustained here on Earth.

You might be interested in
Help me with this question please
vichka [17]

Answer:

Its true i'm pretty sure

Explanation:

7 0
3 years ago
Read 2 more answers
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
The charges that are free to move in a metallic conducting wire and that are responsible for the flow of electric current are
Anna007 [38]

Answer:Negatively charged particle called Free Electrons

Explanation:

Current is the flow of charged particles called Free electrons. Electrons are free to move from one atom to another and we call them a sea of de-localized electrons. In absence of any externally applied emf, these electrons are randomly moving but with the onset of emf, these electrons flow in a particular direction.    

6 0
3 years ago
Which of the following statements it's true about Sir isaac Newton
krek1111 [17]
The legend is that he discovered gravity when an apple feel on his head. I don’t know what the true story is, but that’s what I’ve heard so maybe A??
Although, I’m pretty sure it could also be C
So... between A and C, however, I don’t want you to get it wrong so I would recommend getting another opinion
Hope this helps!
5 0
2 years ago
Read 2 more answers
.
WARRIOR [948]

Answer:

Explanation:distance-time =speed

a,V =s/t

V=2m/2s

V=1m/s

b,v=s/t

V=80m/40s

V= 2m/s

The average speed is 2m/s

8 0
2 years ago
Other questions:
  • Which sound is most likely the most intense
    14·1 answer
  • A space heater primarily converts electrical energy into
    9·1 answer
  • A scientist examines a large pot of boiling water and a small cup of boiling water. The scientist determines that the large pot
    5·2 answers
  • “Would you rather have toast or cereal for breakfast?” Lila's mother asks, allowing Lila to have a sense of control over her bre
    8·1 answer
  • 9. A car driver brakes gently. Her car slows down front --
    11·1 answer
  • express the following in metres (1) 52fm (2) 26 Mm (3)12am (4) 69 pm (5) 85 mm​
    9·1 answer
  • A 55-kg skier starts from rest at the top of a ski jump, point A in Fig. 6–48, and travels down the ramp. If fric- tion and air
    14·2 answers
  • Complete the sentence below using the words provided in parentheses (). For two universes that are the same size, the universe w
    12·1 answer
  • Electron spin: Radio astronomers can detect clouds of hydrogen too cool to radiate optical wavelengths of light by means of the
    5·1 answer
  • A.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!