Answer:
V_{average} =
, V_{average} = 2 V
Explanation:
he average or effective voltage of a wave is the value of the wave in a period
V_average = ∫ V dt
in this case the given volage is a square wave that can be described by the function
V (t) = 
to substitute in the equation let us separate the into two pairs
V_average = 
V_average = 
V_{average} = 
we evaluate V₀ = 4 V
V_{average} = 4 / 2)
V_{average} = 2 V
Scenes the chair wheels are up the person is rolling backwards and if the wheels were down then the person would go forwards
<span />
In Euclidean geometry parallel lines never intersect. But in non-Euclidean geometry parallel lines can either curve away from each other, or curve towards each other. Example : the black lines that wrap themselves around the basketball.
Answer: B ) non-Euclidean
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
Scalar quantity can never be Negative. Because scalar has only magnitude not direction. And magnitude can't be negative.
Explanation: