Answer:
588 N
Explanation:
Since the 60 kg is moving at a constant velocity there is no acceleration. In order for the system to be balanced, both the normal force and the force of gravity must be equal. In this case the man has a mass of 60 kg. So to find the force you multiply mass by gravitys constant (9.81). And you end up with an answer of 588.6 but I rounded to 588.
Add the KE increase and the work done against friction.
The final velocity is twice the average, or 3.0 m/s
The final KE is (1/2)*25*3^2 = 112.5 J
The friction work done is 6*3.8 = 22.8 J
hope this is correct
Answer:
200 N/m
20 rad/s
0.31415 seconds
3.18309 Hz
Explanation:
m = Mass of glider = 0.5 kg
x = Displacement of spring
F = Force on spring = 6 N
From Hooke's law we have relation

The spring constant is 200 N/m
Angular frequency is given by

The angular frequency is 20 rad/s
Frequency is given by

The frequency is 3.18309 Hz
Time period is given by

The time period is 0.31415 seconds