<span>Answer:
Assuming that I understand the geometry correctly, the combine package-rocket will move off the cliff with only a horizontal velocity component. The package will then fall under gravity traversing the height of the cliff (h) in a time T given by
h = 0.5*g*T^2
However, the speed of the package-rocket system must be sufficient to cross the river in that time
v2 = L/T
Conservation of momentum says that
m1*v1 = (m1 + m2)*v2
where m1 is the mass of the rocket, v1 is the speed of the rocket, m2 is the mass of the package, and v2 is the speed of the package-rocket system.
Expressing v2 in terms of v1
v2 = m1*v1/(m1 + m2)
and then expressing the time in terms of v1
T = (m1 + m2)*L/(m1*v1)
substituting T in the first expression
h = 0.5*g*(m1 + m2)^2*L^2/(m1*v1)^2
solving for v1, the speed before impact is given by
v1 = sqrt(0.5*g/h)*(m1 + m2)*L/m1</span>
Answer: Not 100% sure but I believe the answer is B.
Hope this helps! ^^
T = ?
v1 = 0mph
v2 = 60mph
a = 8.7mph/s

Therefore, it takes 6.90 seconds for Jill to accelerate from 0 to 60 miles per hour.
Answer:
The moon is like a mirror. It reflects light produced by the Sun
Explanation:
Formula for time
t=d/s
so…
t= 48m/4m/s
the two ms cancel each other out and ur left with s
t=12s