Answer: Convection and conduction
Tell me that I got it right??
Explanation
Mark me as Brainliest PLEASE I HAVE 0 BRAINLIEST
- The mechanic did 5406 Joules of work pushing the car.
That's the energy he put into the car. When he stops pushing, all the energy he put into the car is now the car's kinetic energy.
- Kinetic energy = (1/2) (mass) (speed²)
And there we have it
- The car's mass is 3,600 kg.
- Its speed is 'v' m/s .
- (1/2) (mass) (v²) = 5,406 Joules
(1/2) (3600 kg) (v²) = 5406 joules
1800 kg (v²) = 5406 joules
v² = (5406 joules) / (1800 kg)
v² = (5406/1800) (joules/kg)
= = = = = This section is just to work out the units of the answer:
- v² = (5406/1800) (Newton-meter/kg)
- v² = (5406/1800) (kg-m²/s² / kg)
= = = = =
v = √(5406/1800) m/s
<em>v = 1.733 m/s</em>
Answer:
<h2>Non-Ionizing Radiation From Wireless Technology
</h2>
Radiofrequency (RF) energy is a type of electromagnetic radiation. It is used to transmit signals carrying information in the form of radio waves. Radio waves are broadcast using a transmitter. When the radio waves reach a receiver, the signal is converted back into the information that was originally sent by the transmitter. When you talk on a cell phone, your cell phone acts as a transmitter and your voice is carried on radio waves to the person you are calling. Their phone acts as the receiver and converts the signal back into your voice. In addition to cell phones, other wireless devices such as radios, Wi-Fi routers, satellites, radars and pacemakers can send or receive RF energy waves.
<h2>The option ( c ) is correct </h2>
Explanation:
As the frequency of oscillation of any oscillator is doubled
The velocity of sound v = νλ
here ν is the frequency and λ is the wavelength
Now if ν becomes double , the wavelength λ becomes one half . The velocity of sound remains the same in the same medium .
Thus option ( c ) is correct
Answer:
The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Explanation: