Answer:
500cal
Explanation:
Given parameters:
Mass of water = 50g
Initial temperature = 22°C
Final temperature = 32°C
Specific heat of water = 1cal/g
Unknown:
Amount of heat absorbed by the water in calories = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the amount of heat absorbed
m is the mass
c is the specific heat capacity
Ф is the temperature change
H = 50 x 1 x (32 - 22) = 500cal
<h2>
Option 1 is the correct answer.</h2>
Explanation:
Power of heater, P = 1790 W
Time used, t = 24 hours = 24 x 60 x 60 = 24 x 3600 s
We have the equation

We need to find energy,
Substituting

Energy = 1790 x 24 x 3600 J
Option 1 is the correct answer.
Answer:
They move farther apart
Explanation:
When objects heat up they expand for example heating up a balloon makes it expand
The correct answer is:

Let's see why.
1 amu corresponds to the mass of the proton, which is:

if we convert this into energy, using Einstein equivalence between mass and energy, we find:

Now we can convert it into electronvolts:

So, 1 amu = 934 MeV. Therefore, 3 amu corresponds to 3 times this value:
<span>The burning of methane is a chemical reaction, There is a</span> change in temperature and the production of gases is the evidence. This <span>chemical change results in the formation of 1 or more new substances and a new compound is create. </span>Methane<span> burns with a smokey flame that forms carbon dioxide and water, which makes it a </span>chemical reaction.