Answer:
Cant say for sure, its been a while sense ive done this, but im almost certain its 70
Explanation:
Take the zero off of your 10 s
Then go 7 m/s x 1 s
Which equals 7
Add the zero back to the end of your answer
10 -- 0 = 1 x 7 = 7 ++ 0 = 70
(PS, two of the same sign is just adding a number to the end of your original answer, that is not what it actually stands for in mathematical terms but that is what i'm using to make it clearer as to whats happening)
I'm not too good at explaining and formulas but i hope this helped
The problem involves the conversion of potential energy to kinetic energy as the object falls from rest. Energy is conserved, so the equation used is:
PEi + KEi = PEf + KEf
Since the object is falling from rest, the initial kinetic energy is zero. Also, since the object hits the ground at its final position, the final potential energy is zero. This leaves:
PEi = KEf
mgh = 1/2 mv^2
*cancel out mass on both sides of the equation
gh = 0.5v^2
v = sqrt(2gh) = sqrt(2*9.81*4.5) = 9.40 m/s --> final ans.
Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.
If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>