Answer:
a =3.33 m/s²
Explanation:
given,
initial speed of Plane, u = 0 m/s
final speed of plane, v = 60 m/s
time of the acceleration, t = 18 s
average acceleration of the plane, a = ?
average acceleration is equal to change in velocity per unit time.



a =3.33 m/s²
Hence, average acceleration of the plane is equal to a =3.33 m/s²


<u />



It takes 20347.4098071s for light from the sun to reach Pluto.
The 6.1*10^9 is replaced by 6.1*10^12 on line 4 because we convert the distance from km to m.
c = speed of light. If a different value was given in the previous question then use that instead of the value I used to do the final calculation.
Option D is correct. An arch carries the thrust of weight to its <u>sides </u>with a <u>post-and-lintel.</u>
<u></u>
<h3>What is an arch?</h3>
An arch is indeed a vertical curving construction that covers an elevated space that may or may not sustain the load above it or the pressure gradient against it
In the case of a horizontally arched, such as an embankment dam. While arches and vaults are often confused, A vault is defined as an ongoing arch forming a roof.
Option D satisfies the fill-in blanks option.
Hence option D is correct. An arch carries the thrust of weight to its <u>sides </u>with a <u>post-and-lintel.</u>
<u></u>
To learn more about the arch refer to the link;
brainly.com/question/18162421
A watering can is used to hold a water that we will use to water the plants. The water has both mass and volume. Two watering cans are most often different by the volume they contain.
Many various units for volume are used but most often used unit is liter. In a metric system basic units are those such as meter, kilogram and liter while in imperial system units used are those such as foote, inch, pound and gallon.
Unit for volume in metric system is cubic meter. It is equal to a volume of a cube whose all sides measure 1m. This is equal to 1000L. For watering cans that contain several liters units used is decimeter cubed. 1dm^3 = 1L
Answer:
Explanation:
Given
mass of lead piece 
mass of water in calorimeter 
Initial temperature of water 
Initial temperature of lead piece 
we know heat capacity of lead and water are
and
respectively
Let us take
be the final temperature of the system
Conserving energy
heat lost by lead=heat gained by water




