The energy of a wave is directly proportional to the square of the amplitude of the wave.
<h3>What is the relationship between energy and amplitude?</h3>
There is direct relationship between energy of the wave and the amplitude of the wave. The energy transported by a wave is directly proportional to the square of the amplitude of the wave. This means if energy is increase the amplitude of wave becomes double and vice versa.
Energy = (amplitude)2
So we can conclude that the energy of a wave is directly proportional to the square of the amplitude of the wave.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
Answer is: c. It must lose two electrons and become an ion.
Magnesium (Mg) is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons (two valence electrons).
Magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.
Explanation:
The refraction of light makes a swimming pool seem <u>shallower</u>.
The swimming pool seems shallower because the rays of light coming from the bottom of the pool do not come with a straight path. The path of light is straight as long as it is in the water.
When lights come out of the water into the air it bents downwards. This bending is called refraction.
Refraction forms a virtual image of the pool and it seems shallower than it actually is to the observer. This only happens when light travels from one transparent medium into another having lower density.
If you need to learn more about why a swimming pool appears <u>shallower</u>, click here
https://brainly.in/question/7136803?referrer=searchResults
#SPJ4
Solar cells can be classified into first, second and third generation cells. The first generation cells—also called conventional, traditional or wafer-based cells—are made of crystalline silicon, the commercially predominant PV technology, that includes materials such as polysilicon and monocrystalline silicon.