<h2>K.E/P.E = m/k tan²φ x ω²</h2>
Explanation:
The given position of block x = x₀ cos(ωt + φ)
The velocity of block v = dx/dt = - x₀ sin(ωt + φ) x ω
The kinetic energy = 1/2 mv² = 1/2 m x₀² sin²(ωt + φ) x ω²
The potential energy of spring = 1/2 k x² , where k is the spring constant
Thus P.E = 1/2 x k x x₀² cos²(ωt + φ)
When t = 0
K.E = 1/2 m x₀²sin²φ x ω²
P.E = 1/2 k x₀² cos²φ
Dividing these , we have
K.E/P.E = m/k tan²φ x ω²
Answer:
JC⁻¹
Explanation:
= mass of water added to calorimeter = 94.8 g
= initial temperature of the water added = 60.4 C
= specific heat of water = 4.184 Jg⁻¹C⁻¹
= mass of water available to calorimeter = 94.8 g
= initial temperature of the water in calorimeter = 22.3 C
= final equilibrium temperature = 35 C
= Heat gained by calorimeter
Using conservation of heat
Heat gained by calorimeter = Heat lost by water added - heat gained by water in calorimeter


J
= Change in temperature of calorimeter
Change in temperature of calorimeter is given as
C
Heat capacity of calorimeter is given as


JC⁻¹
The answer would be : <span>hydrologists.
Hope this helps !
Photon</span>
The gravity of the Sun keeps the planets in their orbits. They stay in their orbits because there is no other force in the Solar System which can stop them.
I would say D is the right answer.
If the object is in an electromagnetic field, then it's movement can be generalized by interactions between charges.