Answer:
The current is reduced to half of its original value.
Explanation:
- Assuming we can apply Ohm's Law to the circuit, as the internal resistance and the load resistor are in series, we can find the current I₁ as follows:

- where Rint = r and RL = r
- Replacing these values in I₁, we have:

- When the battery ages, if the internal resistance triples, the new current can be found using Ohm's Law again:

- We can find the relationship between I₂, and I₁, dividing both sides, as follows:

- The current when the internal resistance triples, is half of the original value, when the internal resistance was r, equal to the resistance of the load.
Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
Answer:
71 rpm
Explanation:
Given that:
Angular momentum (L) = 0.26
Diameter = 25cm = 0.25 cm
Radius, r = (d/2) = 0.125m
Mass = 5.6 kg
Moment of inertia (I) = 2mr² / 5
I = (2 * 5.6 * 0.125^2) / 5
= 0.175
= 0.175 / 5
= 0.035 kgm²
Angular speed (w) ;
w = L / I
w = 0.26 / 0.035
= 7.4285714
= 7.429 rad/s
w = (7.429 * 60/2π)
w = 445.74 / 2π rpm
w = 70.941724
Angular speed = 70.94 rpm
= 71 rpm
1) Assuming an adult person has an average mass of m=80 kg, and assuming it takes about 30 seconds to climb 5 meters of stairs, the energy used by the person is

So the power output is

And since the estimate we made is very rough, we can say that the power output of the person is comparable to the power output of the light bulb of 100 W.
2) Based on the results we found in the previous part of the exercise, since the power output of the person is comparable to the power output of 1 light bulb of 100 W, we can say that the person could have kept burning only one 100-W light bulb during the climb.
Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.