Explanation & answer:
Given:
Fuel consumption, C = 22 L/h
Specific gravity = 0.8
output power, P = 55 kW
heating value, H = 44,000 kJ/kg
Solution:
Calculate energy intake
E = C*P*H
= (22 L/h) / (3600 s/h) * (1000 mL/L) * (0.8 g/mL) * (44000 kJ/kg)
= (22/3600)*1000*0.8*44000 j/s
= 215111.1 j/s
Calculate output power
P = 55 kW
= 55000 j/s
Efficiency
= output / input
= P/E
=55000 / 215111.1
= 0.2557
= 25.6% to 1 decimal place.
Hey, I think someone should help u cause I’m stuck too
Hope this helps !
Better weight distribution and more stability
Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly