Answer:
a) a geostationary satellite is that it is always at the same point with respect to the planet,
b) f = 2.7777 10⁻⁵ Hz
c) d) w = 1.745 10⁻⁴ rad / s
Explanation:
a) The definition of a geostationary satellite is that it is always at the same point with respect to the planet, that is, its period of revolutions is the same as the period of the planet
- T = 10 h (3600 s / 1h) = 3.6 104 s
b) the period the frequency are related
T = 1 / f
f = 1 / T
f = 1 / 3.6 104
f = 2.7777 10⁻⁵ Hz
c) the distance traveled by the satellite in 1 day
The distance traveled is equal to the length of the circumference
d = 2pi (R + r)
d = 2pi (69 911 103 + 120 106)
d = 1193.24 m
d) the angular velocity is the angle traveled between the time used.
.w = 2pi /t
w = 2pi / 3.6 10⁴
w = 1.745 10⁻⁴ rad / s
how fast is
v = w r
v = 1.75 10-4 (69.911 106 + 120 106)
v = 190017 m / s
[I researched for you, since I am not in that particular level to know that knowledge yet. I assure this is accurate info :)]
The answer is A, red.
"Remember, the color you see is light REFLECTING off the surface of that object. If all colors are absorbed in to the surface EXCEPT red, red must be reflected, and you'll see red." - Yahoo User @Chap
your answer is.....
D. have a large atomic radius
although they also increase going from left to right so if D is incorrect, B might be your answer. it depends on context of the lesson.
<span> the </span>electric field<span> direction about a </span>positive<span> source </span>charge<span> is always directed away from the </span>positive<span> source. And the </span>electric field <span>direction about a negative source </span>charge<span> is always directed toward the negative source.</span>
If the velocity of the train is v=s/t, where s is the distance and t is time, then v=400/5=80m/s. To get the vertical component of the velocity we need to multiply the velocity v with a sin(α): Vv=v*sin(α), where Vv is the vertical component of the velocity and α is the angle with the horizontal. So:
Vv=80*sin(10)=80*0.1736=13.888 m/s.
So the vertical component of the velocity of the train is Vv=13.888 m/s.