Distance= distance(initial)+v(initial)*t+0.5at^2
D=0+0*4+0.5*3*4^2
D=24 m
Answer:
Resistance to electrical currents
Explanation:
Conductors have low resistance to electrical currents, and are used to "conduct" the flow of electricity.
Insulators have very high resistance and are used to protect us from the flow of electricity.
q = 1156363.6W/m².
To calculate the heat flux per unit area (W/m²) of a sheet made of metal:
q = -k(ΔT/Δx)
q = -k[(T₂ - T₁)/Δx]
Where, k is the thermal conductivity of the metal, ΔT is the temperature difference and Δx is the thick.
With Δx = 11 mm = 11x10⁻³m, T₂ = 350°C and T₁ = 110°C, and k = 53.0 W/m-K:
q = -53.0W/m-K[(110°C - 350°C)/11x10⁻³m
q = 1156363.6W/m²
Answer:
A
Explanation:
Given that two balls are in motion. A 2-kg ball moving at 4m/s and a 4-kg ball moving at 2m/s, which one has greater kinetic energy? a. 2 kg ball moving at 4 m/s c. Both balls have the same KE b. 4 kg ball moving at 2 m/s d. Cannot be determined
The formula for kinetic energy is :
K.E = 1/2mv^2
A 2-kg ball moving at 4m/s will have kinetic energy of 1/2 × 2 × 4^2
K.E = 16J
and a 4-kg ball moving at 2m/s will have kinetic energy of 1/2 × 4 × 2^2
K.E = 2 × 4
K.E = 8J
which one has greater kinetic energy? Definitely it is a 2 kg ball moving at 4 m/s. Since 16J is greater than 8J. The correct answer is A.