Answer:
a) C6H5COOH + H2O ↔ H3O+ + C6H5COO-
b) [ H3O+ ] = 2.517 E-3 M
c) pH = 2.599
Explanation:
a) balanced equation:
C6H5COOH + H2O ↔ H3O+ + C6H5COO-
⇒ Ka = ( [ H3O+ ] * [ C6H5COO- ] ) / [ C6H5COOH ] = 6.5 E-5
mass balance:
0.10 m = [ C6H5COO- ] + [ C6H5COOH ].....(1)
charge balance:
[ H3O+ ] = [ C6H5COO- ] + [ OH- ] .......[ OH- ] : comes from water, it's not significant
⇒ [ H3O+ ] = [ C6H5COO- ] .........(2)
b) (2) in (1):
⇒ 0.10 M = [ H3O+ ] + [ C6H5COOH ]
⇒ [ C6H5COOH ] = 0.10 - [ H3O+ ]
⇒ Ka = [ H3O+ ]² / ( 0.1 - [ H3O+ ] ) = 6.5 E-5
⇒ [ H3O+ ]² + 6.5 E-5 [ H3O+ ] - 6.5 E-6 = 0
⇒ [ H3O+ ] = 2.517 E-3 M
c) pH = - log [ H3O+ ]
⇒ pH = - Log ( 2.517 E-3 )
⇒ pH = 2.599
Hello:
In this case, we will use the Clapeyron equation:
P = ?
n = 8 moles
T = 250 K
R = 0.082 atm.L/mol.K
V = 6 L
Therefore:
P * V = n * R * T
P * 6 = 8 * 0.082* 250
P* 6 = 164
P = 164 / 6
P = 27.33 atm
Hope that helps!
Answer:
the answer is unsaturated
Explanation:
A saturated solution contains more solute per volume of solvent than an unsaturated solution. The solute has dissolved until no more can, leaving undissolved matter in the solution. ... In a supersaturated solution, there is more dissolved solute than in a saturated solution.
Answer:
The Retention factor (rf) value is = 0.2
Explanation:
- Retention factor (Rf) is factor used substances that could be separated using Chromatography. Retention factor determines how fast the component can move on the chromatogram (stationary phase) after elution. Elution occurs when mobile phase (solvent) moves across the stationary phase when the solute has been spotted on the origin.
- Retention factor (Rf) ranges from value between 0 and 1. The closer the value to 1, the faster it can move upon elution. Rf can be calculated.
- Rf value = distance moved by the solute / distance moved by the solvent
= 0.40cm / 2.00cm
= 0.2
"The water becomes warmer."
<u>Remember</u>: Kinetic energy means how much, on average, a molecule is moving around. This is directly translated into heat. Therefore, the higher the kinetic energy, the more heat produced.