the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
The answer to this question is <span>13,537</span>
Power is the rate work done given by dividing work done by unit time. It is measured in watts equivalent to J/s.
In this case the force by the student is mg = 490 N (taking g as 9.8m/s²)
Work done is given by force × distance,
Therefore, Power =(force × distance)/ time, but velocity/speed =distance/time
Thus, Power = force × speed/velocity
= 490 N × 1.25
= 612.5 J/S (Watts)
Hence, power will be 612.5 Watts.
Answer:
389.78681 K
Explanation:
= Initial pressure = 55.1 mmHg
= Final pressure = 1 atm = 760 mmHg
= Boiling point
= Initial temperature = 35°C
= Heat of vaporization = 32.1 kJ/mol
From the Clausius-Claperyon equation

The normal boiling point of the substance is 389.78681 K