Answer:
Option B. 6.25 J/S
Explanation:
Data obtained from the question include:
t (time) = 2secs
F (force) = 50N
d (distance) = 0.25m
P (power) =?
The power can be obtained by using the formula P = workdone/time.
P = workdone / time
P = (50 x 0.25)/ 2
P = 6.25J/s
Answer: I = 3.6 m3
(C)
Explanation:
moment of inertia for spherically shaped object around it's center is given as
I = (2/5) mr²
substituting the r = 3m²
I = (2/5)*(9) m3
I = 3.6 m3
Answer:
a) Eₓ = - A y + 2B x
, b) Ey = -Ax –C
, c) Ez = 0
, d) The correct answer is 3
Explanation:
The electric field and the electric power are related
E = - dV / ds
a) Let's find the electric field on the x axis
Eₓ = - dV / dx
dV / dx = A y - B 2x
Eₓ = - A y + 2B x
b) calculate the electric field on the y-axis
Ey = - dV / dy
dV / dy = A x + C
Ey = -Ax –C
c) the electric field on the z axis
dv / dz = 0
Ez = 0
.d) at which point the electric field is zero
Since the electric field is a vector quantity all components must be zero
X axis
0 = = - A y + 2B x
y = 2B / A x
Axis y
0 = -Ax –C
.x = -C / A
We substitute this value in the previous equation
.y = 2B / A (-C / A)
.y = 2 B C / A2
The correct answer is 3
Answer:
I believe the correct answer is B..<u>" 1 "</u>
Explanation:
hope it helps! ;)
The correct option is PLUM PUDDING, SOLAR SYSTEM, ELECTRON CLOUD.
J. J Thompson was the scientist who proposed the plum pudding theory of atomic model. Neil Borh was the one who developed the solar system model of atomic theory while the electron cloud model of atomic theory that is presently been used was developed by an Australian scientist called Erwin Schrodinger.<span />