(a) The work done by the force applied by the tractor is 79,968.47 J.
(b) The work done by the frictional force on the tractor is 55,977.93 J.
(c) The total work done by all the forces is 23,990.54 J.
<h3>
Work done by the applied force</h3>
The work done by the force applied by the tractor is calculated as follows;
W = Fd cosθ
W = (5000 x 20) x cos(36.9)
W = 79,968.47 J
<h3>Work done by frictional force</h3>
W = Ffd cosθ
W = (3500 x 20) x cos(36.9)
W = 55,977.93 J
<h3>Net work done by all the forces on the tractor</h3>
W(net) = work done by applied force - work done by friction force
W(net) = 79,968.47 J - 55,977.93 J
W(net) = 23,990.54 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
The magnitude<span> of a </span>velocity<span> vector is </span>called<span> speed. Supposethat a wind is blowing in from the direction at a speed of 50 km/h. (This meansthat the direction from which the wind blows is west of the northerly direction.) Apilot is steering a plane in the direction at an airspeed (speed in still air) of250 km/h
</span>
Answer: The reason for the differences in density is the composition of rock in the plates. When two plates come in contact with each other through plate tectonics, scientists can use the density of the plates to predict what will happen. Whichever plate is more dense will sink, and the less dense plate will float over it.
Explanation:
Hope this helps ( not copied and pasted, this answer was done by me so I don't know if it's good or not)
Answer:
D. Newton's first law
Explanation:
Newton's first law of inertia says that an object will remain how it is, unless affected by an outside force. In this case, the plates want to remain stationary(not moving). Therefore, if you pull the table cloth fast enough, the force of friction produced will be small enough so that the Inertia of the plates will overcome the force of friction.